RESUMO
In metastatic urothelial cancer (mUC), cisplatin versus carboplatin leads to durable disease control in a subset of patients. The IMvigor130 trial reveals more favorable effects with atezolizumab combined with gemcitabine and cisplatin (GemCis) versus gemcitabine and carboplatin (GemCarbo). This study investigates the immunomodulatory effects of cisplatin as a potential explanation for these observations. Our findings indicate that improved outcomes with GemCis versus GemCarbo are primarily observed in patients with pretreatment tumors exhibiting features of restrained adaptive immunity. In addition, GemCis versus GemCarbo ± atezolizumab induces transcriptional changes in circulating immune cells, including upregulation of antigen presentation and T cell activation programs. In vitro experiments demonstrate that cisplatin, compared with carboplatin, exerts direct immunomodulatory effects on cancer cells, promoting dendritic cell activation and antigen-specific T cell killing. These results underscore the key role of immune modulation in cisplatin's efficacy in mUC and highlight the importance of specific chemotherapy backbones in immunotherapy combination regimens.
Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Neoplasias Urológicas , Humanos , Carboplatina/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/induzido quimicamente , Carcinoma de Células de Transição/patologia , Cisplatino/uso terapêutico , Desoxicitidina/uso terapêutico , Gencitabina , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/induzido quimicamente , Neoplasias Urológicas/patologiaRESUMO
PURPOSE: The MORPHEUS platform was designed to identify early efficacy signals and evaluate the safety of novel immunotherapy combinations across cancer types. The phase Ib/II MORPHEUS-UC trial (NCT03869190) is evaluating atezolizumab plus magrolimab, niraparib, or tocilizumab in platinum-refractory locally advanced or metastatic urothelial carcinoma (mUC). Additional treatment combinations were evaluated and will be reported separately. PATIENTS AND METHODS: Patients had locally advanced or mUC that progressed during or following treatment with a platinum-containing regimen. The primary efficacy endpoint was investigator-assessed objective response rate (ORR). Key secondary endpoints included investigator-assessed progression-free survival (PFS) and overall survival (OS). Safety and exploratory biomarker analyses were also conducted. RESULTS: Seventy-six patients were randomized to receive either atezolizumab plus magrolimab (n = 16), atezolizumab plus niraparib (n = 15), atezolizumab plus tocilizumab (n = 15), or atezolizumab monotherapy (control; n = 30). No additive benefit in ORR, PFS, or OS was seen in the treatment arms versus the control. The best confirmed ORR was 26.7% with atezolizumab plus magrolimab, 6.7% with atezolizumab plus niraparib, 20.0% with atezolizumab plus tocilizumab, and 27.6% with atezolizumab monotherapy. Overall, the treatment combinations were tolerable, and adverse events were consistent with each agent's known safety profile. Trends were observed for shrinkage of programmed death-ligand 1-positive tumors (atezolizumab, atezolizumab plus magrolimab, atezolizumab plus tocilizumab), inflamed tumors, or tumors with high mutational burden (atezolizumab), and immune excluded tumors (atezolizumab plus magrolimab). CONCLUSIONS: The evaluated regimens in MORPHEUS-UC were tolerable. However, response rates for the combinations did not meet the criteria for further development in platinum-experienced locally advanced or mUC.
Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Neoplasias Urológicas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma de Células de Transição/patologia , Platina/uso terapêutico , Neoplasias Urológicas/patologiaRESUMO
BACKGROUND: Bacille Calmette-Guérin (BCG) is the standard therapy after transurethral resection of bladder tumour for high-risk non-muscle-invasive bladder cancer (NMIBC). However, post-BCG recurrence/progression occurs frequently, and noncystectomy options are limited. OBJECTIVE: To evaluate the safety and clinical activity of atezolizumab ± BCG in high-risk BCG-unresponsive NMIBC. DESIGN, SETTING, AND PARTICIPANTS: This phase 1b/2 GU-123 study (NCT02792192) treated patients with BCG-unresponsive NMIBC who had carcinoma in situ with atezolizumab ± BCG. INTERVENTION: Patients in cohorts 1A and 1B received atezolizumab 1200 mg IV q3w for ≤96 wk. Those in cohort 1B also received standard BCG induction (six weekly doses) and maintenance courses (three doses weekly starting at month 3) with optional maintenance at 6, 12, 18, 24, and 30 mo. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Coprimary endpoints were safety and 6-mo complete response (CR) rate. Secondary endpoints included 3-mo CR rate and duration of CR; 95% confidence intervals were calculated using the Clopper-Pearson method. RESULTS AND LIMITATIONS: At data cut-off (September 29, 2020), 24 patients were enrolled (cohort 1A, n = 12; cohort 1B, n = 12), and the recommended BCG dose was 50 mg in cohort 1B. Four patients (33%) had adverse events (AEs) leading to BCG dose modification/interruption. Three patients (25%) in cohort 1A reported atezolizumab-related grade 3 AEs; cohort 1B had no atezolizumab- or BCG-related grade ≥3 AEs. No grade 4/5 AEs were reported. The 6-mo CR rate was 33% in cohort 1A (median duration of CR, 6.8 mo) and 42% in cohort 1B (median duration of CR, not reached [≥12 mo]). These results are limited by the small sample size of GU-123. CONCLUSIONS: In this first report of the atezolizumab-BCG combination in NMIBC, atezolizumab ± BCG was well tolerated, with no new safety signals or treatment-related deaths. Preliminary results suggested clinically meaningful activity; the combination favoured a longer duration of response. PATIENT SUMMARY: We studied atezolizumab with and without bacille Calmette-Guérin (BCG) to determine whether this combination was safe and had clinical activity in patients with high-risk noninvasive bladder cancer (high-grade bladder tumours that affect the outermost lining of the bladder wall) that has previously been treated with BCG and is still present or occurred again. Our results suggest that atezolizumab with or without BCG was generally safe and could be used to treat patients unresponsive to BCG.
Assuntos
Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Vacina BCG/uso terapêutico , Neoplasias da Bexiga Urinária/patologia , Administração IntravesicalRESUMO
Although immune checkpoint inhibitors (ICIs) are established as effective cancer therapies, overcoming therapeutic resistance remains a critical challenge. Here we identify interleukin 6 (IL-6) as a correlate of poor response to atezolizumab (anti-PD-L1) in large clinical trials of advanced kidney, breast, and bladder cancers. In pre-clinical models, combined blockade of PD-L1 and the IL-6 receptor (IL6R) causes synergistic regression of large established tumors and substantially improves anti-tumor CD8+ cytotoxic T lymphocyte (CTL) responses compared with anti-PD-L1 alone. Circulating CTLs from cancer patients with high plasma IL-6 display a repressed functional profile based on single-cell RNA sequencing, and IL-6-STAT3 signaling inhibits classical cytotoxic differentiation of CTLs in vitro. In tumor-bearing mice, CTL-specific IL6R deficiency is sufficient to improve anti-PD-L1 activity. Thus, based on both clinical and experimental evidence, agents targeting IL-6 signaling are plausible partners for combination with ICIs in cancer patients.
Assuntos
Antineoplásicos , Interleucina-6 , Neoplasias , Animais , Camundongos , Antineoplásicos/uso terapêutico , Antígeno B7-H1/imunologia , Antígeno B7-H1/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Interleucina-6/metabolismo , Neoplasias/imunologia , Neoplasias/terapiaRESUMO
BACKGROUND: A growing body of evidence suggests that T-cell responses against neoantigens are critical regulators of response to immune checkpoint blockade. We previously showed that circulating neoantigen-specific CD8 T cells in patients with lung cancer responding to anti-Programmed death-ligand 1 (PD-L1) (atezolizumab) exhibit a unique phenotype with high expression of CD57, CD244, and KLRG1. Here, we extended our analysis on neoantigen-specific CD8 T cells to patients with metastatic urothelial cancer (mUC) and further profiled total CD8 T cells to identify blood-based predictive biomarkers of response to atezolizumab. METHODS: We identified tumor neoantigens from 20 patients with mUC and profiled their peripheral CD8 T cells using highly multiplexed combinatorial tetramer staining. Another set of patients with mUC treated with atezolizumab (n=30) or chemotherapy (n=40) were selected to profile peripheral CD8 T cells by mass cytometry. Using single-cell transcriptional analysis (single-cell RNA sequencing (scRNA-seq)), together with CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) and paired T-cell receptor (TCR) sequencing, we further characterized peripheral CD8 T cells in a subset of patients (n=16). RESULTS: High frequency of CD57 was observed in neoantigen-specific CD8 T cells in patients with mUC responding to atezolizumab. Extending these findings to bulk CD8 T cells, we found higher frequency of CD57 expressing CD8 T cells before treatment in patients responding to atezolizumab (n=20, p<0.01) but not to chemotherapy. These findings were corroborated in a validation cohort (n=30, p<0.01) and notably were independent of known biomarkers of response. scRNA-seq analysis identified a clonally expanded cluster enriched within CD57+ CD8 T cells in responding patients characterized by higher expression of genes associated with activation, cytotoxicity, and tissue-resident memory markers. Furthermore, compared with CD57- CD8 T cells, TCRs of CD57+ CD8 T cells showed increased overlap with the TCR repertoire of tumor-infiltrating T cells. CONCLUSIONS: Collectively, we show high frequencies of CD57 among neoantigen-specific and bulk CD8 T cells in patients responding to atezolizumab. The TCR repertoire overlap between peripheral CD57+ CD8 T cells and tumor-infiltrating lymphocytes suggest that accumulation of peripheral CD57+ CD8 T cells is reflective of an ongoing antitumor T-cell response. Our findings provide evidence and rationale for using circulating CD8 T cells expressing CD57 as a readily accessible blood-based biomarker for selecting patients with mUC for atezolizumab therapy.
Assuntos
Carcinoma de Células de Transição , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Antígenos CD57/imunologia , Linfócitos T CD8-Positivos , Humanos , Receptores de Antígenos de Linfócitos T , Análise de Célula ÚnicaRESUMO
PURPOSE: OX40, a receptor transiently expressed by T cells upon antigen recognition, is associated with costimulation of effector T cells and impairment of regulatory T-cell function. This first-in-human study evaluated MOXR0916, a humanized effector-competent agonist IgG1 monoclonal anti-OX40 antibody. PATIENTS AND METHODS: Eligible patients with locally advanced or metastatic refractory solid tumors were treated with MOXR0916 intravenously once every 3 weeks (Q3W). A 3+3 dose-escalation stage (0.2-1,200 mg; n = 34) was followed by expansion cohorts at 300 mg (n = 138) for patients with melanoma, renal cell carcinoma, non-small cell lung carcinoma, urothelial carcinoma, and triple-negative breast cancer. RESULTS: MOXR0916 was well tolerated with no dose-limiting toxicities observed. An MTD was not reached. Most patients (95%) experienced at least one adverse event (AE); 56% of AEs, mostly grade 1-2, were related to MOXR0916. Most common treatment-related AEs included fatigue (17%), diarrhea (8%), myalgia (7%), nausea (6%), decreased appetite (6%), and infusion-related reaction (5%). Pharmacokinetic (PK) parameters were dose proportional between 80 and 1,200 mg and supported Q3W administration. The recommended expansion dose based on PK and OX40 receptor saturation was 300 mg Q3W. Immune activation and upregulation of PD-L1 was observed in a subset of paired tumor biopsies. One renal cell carcinoma patient experienced a confirmed partial response. Overall, 33% of patients achieved stable disease. CONCLUSIONS: Although objective responses were rarely observed with MOXR0916 monotherapy, the favorable safety profile and evidence of tumor immune activation in a subset of patients support further investigation in combination with complementary agents such as PD-1/PD-L1 antagonists.
Assuntos
Carcinoma de Células de Transição , Neoplasias Pulmonares , Neoplasias , Neoplasias da Bexiga Urinária , Anticorpos Monoclonais Humanizados , Antígeno B7-H1 , Carcinoma de Células de Transição/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias/patologiaRESUMO
Although elevated plasma interleukin-8 (pIL-8) has been associated with poor outcome to immune checkpoint blockade 1, this has not been comprehensively evaluated in large randomized studies. Here we analyzed circulating pIL-8 and IL8 gene expression in peripheral blood mononuclear cells and tumors of patients treated with atezolizumab (anti-PD-L1 monoclonal antibody) from multiple randomized trials representing 1,445 patients with metastatic urothelial carcinoma (mUC) and metastatic renal cell carcinoma. High levels of IL-8 in plasma, peripheral blood mononuclear cells and tumors were associated with decreased efficacy of atezolizumab in patients with mUC and metastatic renal cell carcinoma, even in tumors that were classically CD8+ T cell inflamed. Low baseline pIL-8 in patients with mUC was associated with increased response to atezolizumab and chemotherapy. Patients with mUC who experienced on-treatment decreases in pIL-8 exhibited improved overall survival when treated with atezolizumab but not with chemotherapy. Single-cell RNA sequencing of the immune compartment showed that IL8 is primarily expressed in circulating and intratumoral myeloid cells and that high IL8 expression is associated with downregulation of the antigen-presentation machinery. Therapies that can reverse the impacts of IL-8-mediated myeloid inflammation will be essential for improving outcomes of patients treated with immune checkpoint inhibitors.