Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 147: 92-7, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24206690

RESUMO

Hydroponics is a water, energy, space, and cost efficient system for growing plants in constrained spaces or land exhausted areas. Precise control of hydroponic nutrients is essential for growing healthy plants and producing high yields. In this article we report for the first time on a new computer-operated analytical platform which can be readily used for the determination of essential nutrients in hydroponic growing systems. The liquid-handling system uses inexpensive components (i.e., peristaltic pump and solenoid valves), which are discretely computer-operated to automatically condition, calibrate and clean a multi-probe of solid-contact ion-selective electrodes (ISEs). These ISEs, which are based on carbon nanotubes, offer high portability, robustness and easy maintenance and storage. With this new computer-operated analytical platform we performed automatic measurements of K(+), Ca(2+), NO3(-) and Cl(-) during tomato plants growth in order to assure optimal nutritional uptake and tomato production.


Assuntos
Automação/métodos , Meios de Cultura/análise , Hidroponia/métodos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Meios de Cultura/metabolismo , Hidroponia/instrumentação
2.
Anal Chem ; 83(22): 8810-5, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21961835

RESUMO

In this study, we developed a potentiometric planar strip cell based on single-walled carbon nanotubes that aims to exploit the attributes of solid-contact ion-selective electrodes for decentralized measurements. That is, the ion-selective and reference electrodes have been simultaneously miniaturized onto a plastic planar substrate by screen-printing and drop-casting techniques, obtaining disposable strip cells with satisfactory performance characteristics (i.e., the sensitivity is 57.4 ± 1.3 mV/dec, the response time is ≤30 s within the linear range from log a(K+) = -5 to -2, and the limit of detection is -6.5), no need of maintenance during long dry storage, quick signal stabilization, and light insensitivity in short-term measurements. We also show how the new potentiometric strip cell makes it possible to perform decentralized and rapid determinations of ions in real samples, such as saliva or beverages.


Assuntos
Nanotubos de Carbono/economia , Transdutores/economia , Eletrodos/economia , Nanotubos de Carbono/química , Potenciometria/economia , Potenciometria/instrumentação
3.
Anal Chem ; 83(14): 5783-8, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21627300

RESUMO

In this technical note, we report a new all-solid-state planar reference electrode based on single-walled carbon nanotubes and photocured poly(n-butylacrylate) (poly(nBA)) membrane containing the Ag/AgCl/Cl(-) ion system. Single-walled carbon nanotubes functionalized with octadecylamide (SWCNT-ODA) and deposited by drop-casting onto a disposable screen-printed electrode are an excellent all-solid-state transducer. The novel potentiometric planar reference electrode shows low potential variability (calibration slopes inferior to 2 mV/dec) for a wide range of chemical species (i.e., ions, small molecules, proteins) in a wide calibration range, redox pairs, changes in pH, and changes in ambient light. Potentiometric medium-term signal stability (-0.9 ± 0.2 mV/h) and electrochemical impedance characterization confirm the correct solid contact between the SWCNT-ODA layer and photocured poly(nBA) membrane. Overall, the materials used and the simple fabrication by screen-printing and drop-casting enable a high throughput and highly parallel and cost-effective mass manufacture of the new disposable reference electrode. Moreover, the reference electrode has a long shelf life, a characteristic that can be of special interest in decentralized and multiplexing potentiometric analysis.

4.
Anal Bioanal Chem ; 399(10): 3613-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21318254

RESUMO

A novel potentiometric solid-state reference electrode containing single-walled carbon nanotubes as the transducer layer between a polyacrylate membrane and the conductor is reported here. Single-walled carbon nanotubes act as an efficient transducer of the constant potentiometric signal originating from the reference membrane containing the Ag/AgCl/Cl(-) ions system, and they are needed to obtain a stable reference potentiometric signal. Furthermore, we have taken advantage of the light insensitivity of single-walled carbon nanotubes to improve the analytical performance characteristics of previously reported solid-state reference electrodes. Four different polyacrylate polymers have been selected in order to identify the most efficient reservoir for the Ag/AgCl system. Finally, two different arrangements have been assessed: (1) a solid-state reference electrode using photo-polymerised n-butyl acrylate polymer and (2) a thermo-polymerised methyl methacrylate:n-butyl acrylate (1:10) polymer. The sensitivity to various salts, pH and light, as well as time of response and stability, has been tested: the best results were obtained using single-walled carbon nanotubes and photo-polymerised n-butyl acrylate polymer. Water transport plays an important role in the potentiometric performance of acrylate membranes, so a new screening test method has been developed to qualitatively assess the difference in water percolation between the polyacrylic membranes studied. The results presented here open the way for the true miniaturisation of potentiometric systems using the excellent properties of single-walled carbon nanotubes.

5.
Analyst ; 135(9): 2420-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20652191

RESUMO

A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA