Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia Open ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39176980

RESUMO

OBJECTIVE: Rare and complex epilepsies encompass a diverse range of disorders characterized by seizures. We aimed to establish a consensus on key issues related to these conditions through collaboration among experienced neurologists, neuropediatricians, and patient advocacy representatives. METHODS: Employing a modified Delphi method, a scientific board comprising 20 physicians and 4 patient advocacy representatives synthesized existing literature with their expertise to formulate statements on contentious topics. A final 32-member expert panel, representing diverse regions of Italy, validated these statements through a two-round voting process, with consensus defined as an average score ≥7. RESULTS: Sixteen statements reached a consensus, emphasizing the necessity for epidemiological studies to ascertain the true prevalence of rare epilepsies. Etiology emerged as a crucial factor influencing therapeutic strategies and outcome prediction, with particular concern regarding prolonged and tonic-clonic seizures. The importance of early implementation of specific drugs and non-pharmacological interventions in the treatment algorithm for developmental and epileptic encephalopathies (DEEs) was underscored. Multidisciplinary care involving experts with diverse skills was deemed essential, emphasizing non-seizure outcomes in adolescence and adulthood. SIGNIFICANCE: This national consensus underscores the imperative for personalized, comprehensive, and multidisciplinary management of rare epilepsies/DEEs. It advocates for increased research, particularly in epidemiology and therapeutic approaches, to inform clinical decision-making and healthcare policies, ultimately enhancing patients' outcomes. PLAIN LANGUAGE SUMMARY: The modified Delphi method is broadly used to evaluate debated topics. In this work, we sought the consensus on integrated and social care in epilepsy management. Both representatives of high-level epilepsy centers and patients' caregivers were directly involved.

3.
Epilepsia ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953796

RESUMO

OBJECTIVE: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS: Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS: DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE: We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.

5.
Ital J Pediatr ; 50(1): 95, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735928

RESUMO

Febrile seizures (FS) are commonly perceived by healthcare professionals as a self-limited condition with a generally 'benign' nature. Nonetheless, they frequently lead to pediatric consultations, and their management can vary depending on the clinical context. For parents and caregivers, witnessing a seizure can be a distressing experience, significantly impacting their quality of life. In this review, we offer an in-depth exploration of FS management, therapeutic interventions, and prognostic factors, with the aim of providing support for physicians and enhancing communication with families. We conducted a comprehensive literature search using the PubMed and Web of Science databases, spanning the past 50 years. The search terms utilized included "febrile seizure," "complex febrile seizure," "simple febrile seizure," in conjunction with "children" or "infant." Only studies published in English or those presenting evidence-based data were included in our assessment. Additionally, we conducted a cross-reference search to identify any additional relevant data sources. Our thorough literature search resulted in a compilation of references, with carefully selected papers thoughtfully integrated into this review.


Assuntos
Convulsões Febris , Humanos , Convulsões Febris/terapia , Convulsões Febris/diagnóstico , Criança , Lactente , Guias de Prática Clínica como Assunto , Anticonvulsivantes/uso terapêutico , Prognóstico
6.
J Pharm Biomed Anal ; 245: 116174, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703746

RESUMO

We present a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying fenfluramine (FFA), its active metabolite norfenfluramine (norFFA), and Epidyolex®, a pure cannabidiol (CBD) oral solution in plasma. Recently approved by the EMA for the adjunctive treatment of refractory seizures in patients with Dravet and Lennox-Gastaut syndromes aged above 2 years, FFA and CBD still do not have established therapeutic blood ranges, and thus need careful drug monitoring to manage potential pharmacokinetic and pharmacodynamic interactions. Our method, validated by ICH guidelines M10, utilizes a rapid extraction protocol from 100 µL of human plasma and a reversed-phase C-18 HPLC column, with deuterated internal standards. The Thermofisher Quantiva triple-quadrupole MS coupled with an Ultimate 3000 UHPLC allowed multiple reaction monitoring detection, ensuring precise analyte quantification. The assay exhibited linear responses across a broad spectrum of concentrations: ranging from 1.64 to 1000 ng/mL for both FFA and CBD, and from 0.82 to 500 ng/mL for norFFA. The method proves accurate and reproducible, free from matrix effect. Additionally, FFA stability in plasma at 4 °C and -20 °C for up to 7 days bolsters its clinical applicability. Plasma concentrations detected in patients samples, expressed as mean ± standard deviation, were 0.36 ± 0.09 ng/mL for FFA, 19.67 ± 1.22 ng/mL for norFFA. This method stands as a robust tool for therapeutic drug monitoring (TDM) of FFA and CBD, offering significant utility in assessing drug-drug interactions in co-treated patients, thus contributing to optimized patient care in complex therapeutic scenarios.


Assuntos
Canabidiol , Monitoramento de Medicamentos , Fenfluramina , Criança , Pré-Escolar , Humanos , Anticonvulsivantes/sangue , Anticonvulsivantes/farmacocinética , Canabidiol/sangue , Canabidiol/farmacocinética , Monitoramento de Medicamentos/métodos , Epilepsia/tratamento farmacológico , Epilepsia/sangue , Fenfluramina/sangue , Espectrometria de Massa com Cromatografia Líquida , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
7.
Front Mol Neurosci ; 17: 1268013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650658

RESUMO

The human PLAA gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic PLAA variants were reported with progressive neurodegeneration, consequences of monoallelic PLAA variants have not been elucidated. Using exome or genome sequencing we identified PLAA de-novo missense variants, affecting conserved residues within the PUL domain, in children affected with neurodevelopmental disorders (NDDs), including psychomotor regression, intellectual disability (ID) and autism spectrum disorders (ASDs). Computational and in-vitro studies of the identified variants revealed abnormal chain arrangements at C-terminal and reduced PLAA-p97/VCP interaction, respectively. These findings expand both allelic and phenotypic heterogeneity associated to PLAA-related neurological disorders, highlighting perturbed vesicle recycling as a potential disease mechanism in NDDs due to genetic defects of PLAA.

8.
Neurobiol Dis ; 194: 106469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485093

RESUMO

A dysfunctional gut microbiota-brain axis is emerging as a potential pathogenic mechanism in epilepsy, particularly in pediatric forms of epilepsy. To add new insights into gut-related changes in acquired epilepsy that develops early in life, we used a multi-omics approach in a rat model with a 56% incidence of epilepsy. The presence of spontaneous seizures was assessed in adult rats (n = 46) 5 months after status epilepticus induced by intra-amygdala kainate at postnatal day 13, by 2 weeks (24/7) ECoG monitoring. Twenty-six rats developed epilepsy (Epi) while the remaining 20 rats (No-Epi) did not show spontaneous seizures. At the end of ECoG monitoring, all rats and their sham controls (n = 20) were sacrificed for quantitative histopathological and immunohistochemical analyses of the gut structure, glia and macrophages, as well as RTqPCR analysis of inflammation/oxidative stress markers. By comparing Epi, No-Epi rats, and sham controls, we found structural, cellular, and molecular alterations reflecting a dysfunctional gut, which were specifically associated with epilepsy. In particular, the villus height-to-crypt depth ratio and number of Goblet cells were reduced in the duodenum of Epi rats vs both No-Epi rats and sham controls (p < 0.01). Villus height and crypt depth in the duodenum and jejunum (p < 0.01) were increased in No-Epi vs both Epi and sham controls. We also detected enhanced Iba1-positive macrophages, together with increased IL1b and NFE2L2 transcripts and TNF protein, in the small intestine of Epi vs both No-Epi and sham control rats (p < 0.01), denoting the presence of inflammation and oxidative stress. Astroglial GFAP-immunostaining was similar in all experimental groups. Metagenomic analysis in the feces collected 5 months after status epilepticus showed that the ratio of two dominant phyla (Bacteroidota-to-Firmicutes) was similarly increased in Epi and No-Epi rats vs sham control rats. Notably, the relative abundance of families, genera, and species associated with SCFA production differed in Epi vs No-Epi rats, describing a bacterial imprint associated with epilepsy. Furthermore, Epi rats showed a blood metabolic signature characterized by changes in lipid metabolism compared to both No-Epi and sham control rats. Our study provides new evidence of long-term gut alterations, along with microbiota-related metabolic changes, occurring specifically in rats that develop epilepsy after brain injury early in life.


Assuntos
Epilepsia , Microbioma Gastrointestinal , Estado Epiléptico , Humanos , Criança , Ratos , Animais , Convulsões , Inflamação
9.
Neurotherapeutics ; 21(3): e00344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521667

RESUMO

In the landscape of paediatric epilepsy treatment, over 20 anti-seizure medications (ASMs) have gained approval from Drug Regulatory Agencies, each delineating clear indications. However, the complexity of managing drug-resistant epilepsy often necessitates the concurrent use of multiple medications. This therapeutic challenge highlights a notable gap: the absence of standardized guidelines, compelling clinicians to rely on empirical clinical experience when selecting combination therapies. This comprehensive review aims to explore current evidence elucidating the preferential utilization of specific ASMs or their combinations, with a primary emphasis on pharmacodynamic considerations. The fundamental objective underlying rational polytherapy is the strategic combination of medications, harnessing diverse mechanisms of action to optimize efficacy while mitigating shared side effects. Moreover, the intricate interplay between epilepsy and comorbidities partly may influence the treatment selection process. Despite advancements, unresolved queries persist, notably concerning the mechanisms underpinning drug resistance and the paradoxical exacerbation of seizures. By synthesizing existing evidence and addressing pertinent unresolved issues, this review aims to contribute to the evolving landscape of paediatric epilepsy treatment strategies, paving the way for more informed and efficacious therapeutic interventions.


Assuntos
Anticonvulsivantes , Epilepsia , Humanos , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Criança , Epilepsia/tratamento farmacológico , Quimioterapia Combinada/métodos , Epilepsia Resistente a Medicamentos/tratamento farmacológico
10.
Brain ; 147(8): 2775-2790, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456468

RESUMO

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals; the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%) and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%) and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%) and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P = 0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%), motor delay with non-ambulance (64%), and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P = 0.003), non-ambulance (P = 0.035), ongoing enteral feeds (P < 0.001) and cortical visual impairment (P = 0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs, provide insights into their neurological basis, and vitally, enable meaningful genetic counselling for affected individuals and their families.


Assuntos
Glicosilfosfatidilinositóis , Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Estudos Retrospectivos , Lactente , Adulto , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/genética , Deficiência Intelectual/genética , Deficiências do Desenvolvimento/genética , Adulto Jovem , Defeitos Congênitos da Glicosilação/genética , Fenótipo , Convulsões/genética
11.
Epilepsia Open ; 9(2): 486-500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334331

RESUMO

Myoclonus classically presents as a brief (10-50 ms duration), non-rhythmic jerk movement. The etiology could vary considerably ranging from self-limited to chronic or even progressive disorders, the latter falling into encephalopathic pictures that need a prompt diagnosis. Beyond the etiological classification, others evaluate myoclonus' body distribution (i.e., clinical classification) or the location of the generator (i.e., neurophysiological classification); particularly, knowing the anatomical source of myoclonus gives inputs on the observable clinical patterns, such as EMG bursts duration or EEG correlate, and guides the therapeutic choices. Among all the chronic disorders, myoclonus often presents itself as a manifestation of epilepsy. In this context, myoclonus has many facets. Myoclonus occurs as one, or the only, seizure manifestation while it can also present as a peculiar type of movement disorder; moreover, its electroclinical features within specific genetically determined epileptic syndromes have seldom been investigated. In this review, following a meeting of recognized experts, we provide an up-to-date overview of the neurophysiology and nosology surrounding myoclonus. Through the dedicated exploration of epileptic syndromes, coupled with pragmatic guidance, we aim to furnish clinicians and researchers alike with practical advice for heightened diagnostic management and refined treatment strategies. PLAIN LANGUAGE SUMMARY: In this work, we described myoclonus, a movement characterized by brief, shock-like jerks. Myoclonus could be present in different diseases and its correct diagnosis helps treatment.


Assuntos
Epilepsia , Síndromes Epilépticas , Transtornos dos Movimentos , Mioclonia , Humanos , Mioclonia/diagnóstico , Mioclonia/terapia , Mioclonia/etiologia , Diagnóstico Diferencial , Epilepsia/complicações , Síndromes Epilépticas/complicações
12.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411286

RESUMO

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Síndromes Epilépticas , Adulto , Humanos , Epilepsia do Lobo Temporal/complicações , Fenitoína , Estudos Transversais , Síndromes Epilépticas/complicações , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Convulsões/complicações , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
13.
Nutrients ; 16(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257165

RESUMO

(1) Background: The first 1000 days of life constitute a critical window of opportunity for microbiota development. Nutrients play a crucial role in enriching and diversifying the microbiota, derived not only from solid food but also from maternal dietary patterns during gestation. (2) Methods: We conducted a comprehensive literature review using the PubMed database, covering eleven years (2013-2023). We included English-language reviews, original research papers, and meta-analyses, while excluding case reports and letters. (3) Results: Consensus in the literature emphasizes that our interaction with a multitude of microorganisms begins in the intrauterine environment and continues throughout our lives. The existing data suggest that early nutritional education programs, initiated during pregnancy and guiding infant diets during development, may influence the shaping of the gut microbiota, promoting long-term health. (4) Conclusions: Further research is necessary in the coming years to assess potential interventions and early nutritional models aimed at modulating the pediatric microbiota, especially in vulnerable populations such as premature newborns.


Assuntos
Microbioma Gastrointestinal , Microbiota , Recém-Nascido , Lactente , Feminino , Gravidez , Humanos , Criança , Desmame , Consenso , Bases de Dados Factuais
15.
Genes (Basel) ; 14(12)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136965

RESUMO

Pathogenic gene variants encoding nuclear pore complex (NPC) proteins were previously implicated in the pathogenesis of steroid-resistant nephrotic syndrome (SRNS). The NUP85 gene, encoding nucleoporin, is related to a very rare form of SRNS with limited genotype-phenotype information. We identified an Italian boy affected with an SRNS associated with severe neurodevelopmental impairment characterized by microcephaly, axial hypotonia, lack of achievement of motor milestones, and refractory seizures with an associated hypsarrhythmic pattern on electroencephalography. Brain magnetic resonance imaging (MRI) showed hypoplasia of the corpus callosum and a simplified gyration of the cerebral cortex. Since the age of 3 years, the boy was followed up at our Pediatric Nephrology Department for an SRNS, with a focal segmental glomerulosclerosis at renal biopsy. The boy died 32 months after SRNS onset, and a Whole-Exome Sequencing analysis revealed a novel compound heterozygous variant in NUP85 (NM_024844.5): 611T>A (p.Val204Glu), c.1904T>G (p.Leu635Arg), inherited from the father and mother, respectively. We delineated the clinical phenotypes of NUP85-related disorders, reviewed the affected individuals so far reported in the literature, and overall expanded both the phenotypic and the molecular spectrum associated with this ultra-rare genetic condition. Our study suggests a potential occurrence of severe neurological phenotypes as part of the NUP85-related clinical spectrum and highlights an important involvement of nucleoporin in brain developmental processes and neurological function.


Assuntos
Neurônios , Podócitos , Criança , Pré-Escolar , Humanos , Masculino , Mutação , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia , Neurônios/metabolismo , Neurônios/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Podócitos/metabolismo , Podócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA