Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mediators Inflamm ; 2023: 2899271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926280

RESUMO

Toll-like receptors (TLRs) are the most studied receptors among the pattern recognition receptors (PRRs). They act as microbial sensors, playing major roles in the regulation of the innate immune system. TLRs mediate their cellular functions through the activation of MyD88-dependent or MyD88-independent signaling pathways. Myd88, or myeloid differentiation primary response 88, is a cytosolic adaptor protein essential for the induction of proinflammatory cytokines by all TLRs except TLR3. While the crucial role of Myd88 is well described, the contribution of other adaptors in mediating TLR signaling and function has been underestimated. In this review, we highlight important results demonstrating that TIRAP and TRAM adaptors are also required for full signaling activity and responses induced by most TLRs.


Assuntos
Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-Like , Receptor 3 Toll-Like , Receptores Toll-Like , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal
2.
Anat Rec (Hoboken) ; 306(5): 1165-1183, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36196983

RESUMO

The effect of Western diets in the gastrointestinal system is largely mediated by their ability to promote alterations in the immunity and physiology of the intestinal epithelium, and to affect the composition of the commensal microbiota. To investigate the response of the colonic epithelium to high-fat/high-cholesterol diets (HFHCDs), we evaluated the synthesis of host defense factors involved in the maintenance of the colonic homeostasis. C57BL/6 mice were fed an HFHCD for 3 weeks and their colons were evaluated for histopathology, gene expression, and microbiota composition. In addition, intestinal permeability and susceptibility to Citrobacter rodentium were also studied. HFHCD caused colonic hyperplasia, loss of goblet cells, thinning of the mucus layer, moderate changes in the composition of the intestinal microbiota, and an increase in intestinal permeability. Gene expression analyses revealed significant drops in the transcript levels of Muc1, Muc2, Agr2, Atoh1, Spdef, Ang4, Camp, Tff3, Dmbt1, Fcgbp, Saa3, and Retnlb. The goblet cell granules of HFHCD-fed mice were devoid of Relmß and Tff3, indicating defective production of those two factors critical for intestinal epithelial defense and homeostasis. In correspondence with these defects, colonic bacteria were in close contact with, and invading the epithelium. Fecal shedding of C. rodentium showed an increased bacterial burden in HFHCD-fed animals accompanied by increased epithelial damage. Collectively, our results show that HFHCD perturbs the synthesis of colonic host defense factors, which associate with alterations in the commensal microbiota, the integrity of the intestinal barrier, and the host's susceptibility to enteric infections.


Assuntos
Colo , Mucosa Intestinal , Camundongos , Animais , Camundongos Endogâmicos C57BL , Colo/metabolismo , Células Caliciformes/metabolismo , Dieta
3.
Cancers (Basel) ; 13(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503224

RESUMO

NCOR1 is a corepressor that mediates transcriptional repression through its association with nuclear receptors and specific transcription factors. Some evidence supports a role for NCOR1 in neonatal intestinal epithelium maturation and the maintenance of epithelial integrity during experimental colitis in mice. We hypothesized that NCOR1 could control colorectal cancer cell proliferation and tumorigenicity. Conditional intestinal epithelial deletion of Ncor1 in ApcMin/+ mice resulted in a significant reduction in polyposis. RNAi targeting of NCOR1 in Caco-2/15 and HT-29 cell lines led to a reduction in cell growth, characterized by cellular senescence associated with a secretory phenotype. Tumor growth of HT-29 cells was reduced in the absence of NCOR1 in the mouse xenografts. RNA-seq transcriptome profiling of colon cancer cells confirmed the senescence phenotype in the absence of NCOR1 and predicted the occurrence of a pro-migration cellular signature in this context. SOX2, a transcription factor essential for pluripotency of embryonic stem cells, was induced under these conditions. In conclusion, depletion of NCOR1 reduced intestinal polyposis in mice and caused growth arrest, leading to senescence in human colorectal cell lines. The acquisition of a pro-metastasis signature in the absence of NCOR1 could indicate long-term potential adverse consequences of colon-cancer-induced senescence.

4.
Cells ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359960

RESUMO

Intestinal epithelial self-renewal is tightly regulated by signaling pathways controlling stem cell proliferation, determination and differentiation. In particular, Wnt/ß-catenin signaling controls intestinal crypt cell division, survival and maintenance of the stem cell niche. Most colorectal cancers are initiated by mutations activating the Wnt/ß-catenin pathway. Wnt signals are transduced through Frizzled receptors and LRP5/LRP6 coreceptors to downregulate GSK3ß activity, resulting in increased nuclear ß-catenin. Herein, we explored if LRP6 expression is required for maintenance of intestinal homeostasis, regeneration and oncogenesis. Mice with an intestinal epithelial cell-specific deletion of Lrp6 (Lrp6IEC-KO) were generated and their phenotype analyzed. No difference in intestinal architecture nor in proliferative and stem cell numbers was found in Lrp6IEC-KO mice in comparison to controls. Nevertheless, using ex vivo intestinal organoid cultures, we found that LRP6 expression was critical for crypt cell proliferation and stem cell maintenance. When exposed to dextran sodium sulfate, Lrp6IEC-KO mice developed more severe colitis than control mice. However, loss of LRP6 did not affect tumorigenesis in ApcMin/+ mice nor growth of human colorectal cancer cells. By contrast, Lrp6 silencing diminished anchorage-independent growth of BRafV600E-transformed intestinal epithelial cells (IEC). Thus, LRP6 controls intestinal stem cell functionality and is necessary for BRAF-induced IEC oncogenesis.


Assuntos
Células Epiteliais/metabolismo , Homeostase/fisiologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células-Tronco/citologia , Animais , Carcinogênese/metabolismo , Transformação Celular Neoplásica/genética , Homeostase/genética , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Organoides/metabolismo , Regeneração/fisiologia
5.
Cell Commun Signal ; 19(1): 10, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494775

RESUMO

Over the past 2 decades, pattern recognition receptors (PRRs) have been shown to be on the front line of many illnesses such as autoimmune, inflammatory, and neurodegenerative diseases as well as allergies and cancer. Among PRRs, toll-like receptors (TLRs) are the most studied family. Dissecting TLRs signaling turned out to be advantageous to elaborate efficient treatments to cure autoimmune and chronic inflammatory disorders. However, a broad understanding of TLR effectors is required to propose a better range of cures. In addition to kinases and E3 ubiquitin ligases, phosphatases emerge as important regulators of TLRs signaling mediated by NF-κB, type I interferons (IFN I) and Mitogen-Activated Protein Kinases signaling pathways. Here, we review recent knowledge on TLRs signaling modulation by different classes and subclasses of phosphatases. Thus, it becomes more and more evident that phosphatases could represent novel therapeutic targets to control pathogenic TLRs signaling. Video Abstract.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Receptores Toll-Like/metabolismo , Animais , COVID-19/metabolismo , Humanos , SARS-CoV-2 , Transdução de Sinais
6.
Oncogene ; 40(2): 452-464, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177649

RESUMO

Interleukin-17 receptor D (IL-17RD), also known as similar expression to Fgf genes (SEF), is proposed to act as a signaling hub that negatively regulates mitogenic signaling pathways, like the ERK1/2 MAP kinase pathway, and innate immune signaling. The expression of IL-17RD is downregulated in certain solid tumors, which has led to the hypothesis that it may exert tumor suppressor functions. However, the role of IL-17RD in tumor biology remains to be studied in vivo. Here, we show that genetic disruption of Il17rd leads to the increased formation of spontaneous tumors in multiple tissues of aging mice. Loss of IL-17RD also promotes tumor development in a model of colitis-associated colorectal cancer, associated with an exacerbated inflammatory response. Colon tumors from IL-17RD-deficient mice are characterized by a strong enrichment in inflammation-related gene signatures, elevated expression of pro-inflammatory tumorigenic cytokines, such as IL-17A and IL-6, and increased STAT3 tyrosine phosphorylation. We further show that RNAi depletion of IL-17RD enhances Toll-like receptor and IL-17A signaling in colon adenocarcinoma cells. No change in the proliferation of normal or tumor intestinal epithelial cells was observed upon genetic inactivation of IL-17RD. Our findings establish IL-17RD as a tumor suppressor in mice and suggest that the protein exerts its function mainly by limiting the extent and duration of inflammation.


Assuntos
Carcinogênese/patologia , Colite/complicações , Neoplasias do Colo/patologia , Inflamação/complicações , Receptores de Interleucina/fisiologia , Animais , Carcinogênese/metabolismo , Proliferação de Células , Neoplasias do Colo/etiologia , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transcriptoma , Tirosina/metabolismo
7.
Nucleic Acids Res ; 47(19): 10247-10266, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31504805

RESUMO

The anti-apoptotic BAG-1 protein isoforms are known to be overexpressed in colorectal tumors and are considered to be potential therapeutic targets. The isoforms are derived from alternative translation initiations occuring at four in-frame start codons of a single mRNA transcript. Its 5'UTR also contains an internal ribosome entry site (IRES) regulating the cap-independent translation of the transcript. An RNA G-quadruplex (rG4) is located at the 5'end of the BAG-1 5'UTR, upstream of the known cis-regulatory elements. Herein, we observed that the expression of BAG-1 isoforms is post-transcriptionally regulated in colorectal cancer cells and tumors, and that stabilisation of the rG4 by small molecules ligands reduces the expression of endogenous BAG-1 isoforms. We demonstrated a critical role for the rG4 in the control of both cap-dependent and independent translation of the BAG-1 mRNA in colorectal cancer cells. Additionally, we found an upstream ORF that also represses BAG-1 mRNA translation. The structural probing of the complete 5'UTR showed that the rG4 acts as a steric block which controls the initiation of translation at each start codon of the transcript and also maintains the global 5'UTR secondary structure required for IRES-dependent translation.


Assuntos
Proteínas de Ligação a DNA/genética , Quadruplex G , Biossíntese de Proteínas , Fatores de Transcrição/genética , Regiões 5' não Traduzidas/genética , Apoptose/genética , Códon de Iniciação/genética , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica/genética , Humanos , Sítios Internos de Entrada Ribossomal/genética , Ligantes , Iniciação Traducional da Cadeia Peptídica/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Secundária de Proteína , Proteínas de Ligação ao Cap de RNA/genética , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/química
8.
Sci Rep ; 9(1): 11316, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383875

RESUMO

Autophagy has both tumor-promoting and -suppressing effects in cancer, including colorectal cancer (CRC), with transformed cells often exhibiting high autophagic flux. In established tumors, autophagy inhibition can lead to opposite responses resulting in either tumor cell death or hyperproliferation. The functional mechanisms underlying these differences are poorly understood. The present study aimed to investigate the relationship between the autophagic capacities of CRC cells and their sensitivities to autophagy inhibition. All studied CRC cell lines showed high basal autophagic flux. However, only HCT116 and Caco-2/15 cells displayed regulated autophagic flux upon starvation. Knockdown of ATG5 (which disrupts autophagosome elongation) or RAB21 (which decreases autophagosome/lysosome fusion) had little effect on CRC cell proliferation in vitro. Nonetheless, inhibition of autophagy in vivo had a substantial cell line-dependent impact on tumor growth, with some cells displaying decreased (HCT116 and Caco-2/15) or increased (SW480 and LoVo) proliferation. RNA sequencing and Western blot analyses in hyperproliferative SW480 tumors revealed that the mTORC2 and AKT pathways were hyperactivated following autophagy impairment. Inhibition of either mTOR or AKT activities rescued the observed hyperproliferation in autophagy-inhibited SW480 and reduced tumor growth. These results highlight that autophagy inhibition can lead, in specific cellular contexts, to compensatory mechanisms promoting tumor growth.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Autofagia/genética , Neoplasias Colorretais/genética , Proteínas rab de Ligação ao GTP/genética , Apoptose/genética , Autofagossomos/metabolismo , Autofagossomos/patologia , Células CACO-2 , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Técnicas de Silenciamento de Genes , Células HCT116 , Células HT29 , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Análise de Sequência de RNA , Transdução de Sinais/genética
9.
Cancers (Basel) ; 11(8)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412666

RESUMO

The WNT/ß-catenin signaling pathway controls stem and progenitor cell proliferation, survival and differentiation in epithelial tissues. Aberrant stimulation of this pathway is therefore frequently observed in cancers from epithelial origin. For instance, colorectal and hepatic cancers display activating mutations in the CTNNB1 gene encoding ß-catenin, or inactivating APC and AXIN gene mutations. However, these mutations are uncommon in breast and pancreatic cancers despite nuclear ß-catenin localization, indicative of pathway activation. Notably, the low-density lipoprotein receptor-related protein 6 (LRP6), an indispensable co-receptor for WNT, is frequently overexpressed in colorectal, liver, breast and pancreatic adenocarcinomas in association with increased WNT/ß -catenin signaling. Moreover, LRP6 is hyperphosphorylated in KRAS-mutated cells and in patient-derived colorectal tumours. Polymorphisms in the LRP6 gene are also associated with different susceptibility to developing specific types of lung, bladder and colorectal cancers. Additionally, recent observations suggest that LRP6 dysfunction may be involved in carcinogenesis. Indeed, reducing LRP6 expression and/or activity inhibits cancer cell proliferation and delays tumour growth in vivo. This review summarizes current knowledge regarding the biological function and regulation of LRP6 in the development of epithelial cancers-especially colorectal, liver, breast and pancreatic cancers.

11.
J Cell Physiol ; 234(5): 6731-6745, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30273442

RESUMO

The Ras/mitogen-activated protein kinase (MAPK) pathway controls fundamental cellular processes such as proliferation, differentiation, and apoptosis. The dual-specificity phosphatase 6 (DUSP6) regulates cytoplasmic MAPK signaling by dephosphorylating and inactivating extracellular signal-regulated kinase (ERK1/2) MAPK. To determine the role of DUSP6 in the maintenance of intestinal homeostasis, we characterized the intestinal epithelial phenotype of Dusp6 knockout (KO) mice under normal, oncogenic, and proinflammatory conditions. Our results show that loss of Dusp6 increased crypt depth and epithelial cell proliferation without altering colonic architecture. Crypt regeneration capacity was also enhanced, as revealed by ex vivo Dusp6 KO organoid cultures. Additionally, loss of Dusp6 induced goblet cell expansion without affecting enteroendocrine and absorptive cell differentiation. Our data also demonstrate that Dusp6 KO mice were protected from acute dextran sulfate sodium-induced colitis, as opposed to wild-type mice. In addition, Dusp6 gene deletion markedly enhanced tumor load in Apc Min/+ mice. Decreased DUSP6 expression by RNA interference in HT29 colorectal cancer cells enhanced ERK1/2 activation levels and promoted both anchorage-independent growth in soft agar as well as invasion through Matrigel. Finally, DUSP6 mRNA expression in human colorectal tumors was decreased in advanced stage tumors compared with paired normal tissues. These results demonstrate that DUSP6 phosphatase, by controlling ERK1/2 activation, regulates colonic inflammatory responses, and protects the intestinal epithelium against oncogenic stress.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/metabolismo , Colo/patologia , Neoplasias Colorretais/metabolismo , Fosfatase 6 de Especificidade Dupla/metabolismo , Animais , Apoptose/fisiologia , Colite/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Sulfato de Dextrana , Fosfatase 6 de Especificidade Dupla/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Transgênicos
12.
J Pathol ; 247(1): 135-146, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376595

RESUMO

The Src homology-2 domain-containing tyrosine phosphatase 2 (SHP-2) regulates many cellular processes, including proliferation, differentiation and survival. Polymorphisms in the gene encoding SHP-2 are associated with an increased susceptibility to develop ulcerative colitis. We recently reported that intestinal epithelial cell (IEC)-specific deletion of Shp-2 in mice (Shp-2IEC-KO ) leads to chronic colitis and colitis-associated cancer. This suggests that SHP-2-dependent signaling protects the colonic epithelium against inflammation and colitis-associated cancer development. To verify this hypothesis, we generated mice expressing the Shp-2 E76K activated form specifically in IEC. Our results showed that sustained Shp-2 activation in IEC increased intestine and crypt length, correlating with increased cell proliferation and migration. Crypt regeneration capacity was also markedly enhanced, as revealed by ex vivo organoid culture. Shp-2 activation alters the secretory cell lineage, as evidenced by increased goblet cell numbers and mucus secretion. Notably, these mice also demonstrated elevated ERK signaling in IEC and exhibited resistance against both chemical- and Citrobacter rodentium-induced colitis. In contrast, mice with IEC-specific Shp-2 deletion displayed reduced ERK signaling and rapidly developed chronic colitis. Remarkably, expression of an activated form of Braf in Shp-2-deficient mice restored ERK activation, goblet cell production and prevented colitis. Altogether, our results indicate that chronic activation of Shp-2/ERK signaling in the colonic epithelium confers resistance to mucosal erosion and colitis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Movimento Celular , Proliferação de Células , Colite/prevenção & controle , Colo/enzimologia , Células Caliciformes/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Regeneração , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Colite/enzimologia , Colite/genética , Colite/patologia , Colo/patologia , Modelos Animais de Doenças , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Caliciformes/patologia , Camundongos Transgênicos , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Cicatrização
13.
FASEB J ; 31(8): 3512-3526, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28465325

RESUMO

Shp-1 (Src homology region 2 domain-containing protein tyrosine phosphatase-1) is a phosphatase that is highly expressed in hematopoietic and epithelial cells. Whereas its function is largely characterized in hematopoietic cells, its role in epithelial cells, such as intestinal epithelial cells (IECs), is not well known. Here, we generated mice with an IEC-specific knockout of Shp-1 (Src homology region 2 domain-containing phosphatase-1; Shp-1IEC-KO). We showed that the loss of epithelial Shp-1 leads to an intestinalomegaly that is associated with an increase in epithelial cell proliferation and size. Histologic analysis demonstrates significant perturbation of the crypt-villus architecture with an apparent increase in the number of goblet and Paneth cells and increased expression of their respective markers {Muc2 (mucin 2), αDef, and Sox9 [SRY (sex determining region Y)-box 9]}. Expansion of intermediate cells-common progenitors of goblet and Paneth cell lineages-is also observed in Shp-1IEC-KO mice. Although sustained activation of Wnt/ß-catenin and PI3K/Akt/mammalian target of rapamycin signaling is observed, Shp-1IEC-KO mice fail to develop any intestinal tumors after 15 mo; however, the loss of Shp-1 in IECs markedly enhances tumor load ApcMin/+ mice. These findings show a novel role for Shp-1 in the regulation of IEC growth and secretory lineage allocation, possibly via modulation of PI3K/Akt-dependent signaling pathways. Finally, Shp-1 does not function as a classic tumor suppressor gene in the intestinal epithelium.-Leblanc, C., Langlois, M.-J., Coulombe, G., Vaillancourt-Lavigueur, V., Jones, C., Carrier, J. C., Boudreau, F., Rivard, N. Epithelial Src homology region 2 domain-containing phosphatase-1 restrains intestinal growth, secretory cell differentiation, and tumorigenesis.


Assuntos
Neoplasias do Colo/metabolismo , Regulação da Expressão Gênica/fisiologia , Intestinos/crescimento & desenvolvimento , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Animais , Cateninas/genética , Cateninas/metabolismo , Células Epiteliais/fisiologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
14.
Oncotarget ; 7(40): 65676-65695, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27582544

RESUMO

A major risk factor of developing colorectal cancer (CRC) is the presence of chronic inflammation in the colon. In order to understand how inflammation contributes to CRC development, the present study focused on SHP-2, a tyrosine phosphatase encoded by PTPN11 gene in which polymorphisms have been shown to be markers of colitis susceptibility. Conversely, gain-of-function mutations in PTPN11 gene (E76 residue) have been found in certain sporadic CRC. Results shown herein demonstrate that SHP-2 expression was markedly increased in sporadic human adenomas but not in advanced colorectal tumors. SHP-2 silencing inhibited proliferative, invasive and tumoral properties of both intestinal epithelial cells (IECs) transformed by oncogenic KRAS and of human CRC cells. IEC-specific expression of a SHP-2E76K activated mutant in mice was not sufficient to induce tumorigenesis but markedly promoted tumor growth under the ApcMin/+ background. Conversely, mice with a conditional deletion of SHP-2 in IECs developed colitis-associated adenocarcinomas with age, associated with sustained activation of Wnt/ß-catenin, NFκB and STAT3 signalings in the colonic mucosae. Moreover, SHP-2 epithelial deficiency considerably increased tumor load in ApcMin/+ mice, shifting tumor incidence toward the colon. Overall, these results reveal that SHP-2 can exert opposing functions in the large intestine: it can promote or inhibit tumorigenesis depending of the inflammatory context.


Assuntos
Adenocarcinoma/prevenção & controle , Biomarcadores Tumorais/metabolismo , Colite/complicações , Neoplasias Colorretais/prevenção & controle , Neoplasias Intestinais/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/etiologia , Adenocarcinoma/patologia , Animais , Apoptose , Carcinogênese , Proliferação de Células , Colite/fisiopatologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Neoplasias Intestinais/etiologia , Neoplasias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Transdução de Sinais , Células Tumorais Cultivadas
15.
J Cell Physiol ; 231(11): 2529-40, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27100271

RESUMO

Polymorphisms in the PTPN11 gene encoding for the tyrosine phosphatase SHP-2 were described in patients with ulcerative colitis. We have recently demonstrated that mice with an intestinal epithelial cell-specific deletion of SHP-2 (SHP-2(IEC-KO) ) develop severe colitis 1 month after birth. However, the mechanisms by which SHP-2 deletion induces colonic inflammation remain to be elucidated. We generated SHP-2(IEC-KO) mice lacking Myd88 exclusively in the intestinal epithelium. The colonic phenotype was histologically analyzed and cell differentiation was determined by electron microscopy and lysozyme or Alcian blue staining. Microbiota composition was analyzed by 16S sequencing. Results show that innate defense genes including those specific to Paneth cells were strongly up-regulated in SHP-2-deficient colons. Expansion of intermediate cells (common progenitors of the Goblet and Paneth cell lineages) was found in the colon of SHP-2(IEC-KO) mice whereas Goblet cell number was clearly diminished. These alterations in Goblet/intermediate cell ratio were noticed 2 weeks after birth, before the onset of inflammation and were associated with significant alterations in microbiota composition. Indeed, an increase in Enterobacteriaceae and a decrease in Firmicutes were observed in the colon of these mice, indicating that dysbiosis also occurred prior to inflammation. Importantly, loss of epithelial Myd88 expression inhibited colitis development in SHP-2(IEC-KO) mice, rescued Goblet/intermediate cell ratio, and prevented NFκB hyperactivation and inflammation. These data indicate that SHP-2 is functionally important for the maintenance of appropriate barrier function and host-microbiota homeostasis in the large intestine. J. Cell. Physiol. 231: 2529-2540, 2016. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Colo/patologia , Homeostase , Inflamação/patologia , Inflamação/prevenção & controle , Microbiota , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Animais Recém-Nascidos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Biomarcadores/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Inflamação/genética , Camundongos Endogâmicos C57BL , Muramidase/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Regulação para Cima/genética
16.
Cell Mol Gastroenterol Hepatol ; 2(1): 11-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28174704

RESUMO

SHP-2 is a tyrosine phosphatase expressed in most embryonic and adult tissues. SHP-2 regulates many cellular functions including growth, differentiation, migration, and survival. Genetic and biochemical evidence show that SHP-2 is required for rat sarcoma viral oncogene/extracellular signal-regulated kinases mitogen-activated protein kinase pathway activation by most tyrosine kinase receptors, as well as by G-protein-coupled and cytokine receptors. In addition, SHP-2 can regulate the Janus kinase/signal transducers and activators of transcription, nuclear factor-κB, phosphatidyl-inositol 3-kinase/Akt, RhoA, Hippo, and Wnt/ß-catenin signaling pathways. Emerging evidence has shown that SHP-2 dysfunction represents a key factor in the pathogenesis of gastrointestinal diseases, in particular in chronic inflammation and cancer. Variations within the gene locus encoding SHP-2 have been associated with increased susceptibility to develop ulcerative colitis and gastric atrophy. Furthermore, mice with conditional deletion of SHP-2 in intestinal epithelial cells rapidly develop severe colitis. Similarly, hepatocyte-specific deletion of SHP-2 induces hepatic inflammation, resulting in regenerative hyperplasia and development of tumors in aged mice. However, the SHP-2 gene initially was suggested to be a proto-oncogene because activating mutations of this gene were found in pediatric leukemias and certain forms of liver and colon cancers. Moreover, SHP-2 expression is up-regulated in gastric and hepatocellular cancers. Notably, SHP-2 functions downstream of cytotoxin-associated antigen A (CagA), the major virulence factor of Helicobacter pylori, and is associated with increased risks of gastric cancer. Further compounding this complexity, most recent findings suggest that SHP-2 also coordinates carbohydrate, lipid, and bile acid synthesis in the liver and pancreas. This review aims to summarize current knowledge and recent data regarding the biological functions of SHP-2 in the gastrointestinal tract.

17.
Mol Carcinog ; 55(5): 671-87, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808857

RESUMO

Cathepsin B is a cysteine proteinase that primarily functions as an endopeptidase within endolysosomal compartments in normal cells. However, during tumoral expansion, the regulation of cathepsin B can be altered at multiple levels, thereby resulting in its overexpression and export outside of the cell. This may suggest a possible role of cathepsin B in alterations leading to cancer progression. The aim of this study was to determine the contribution of intracellular and extracellular cathepsin B in growth, tumorigenesis, and invasion of colorectal cancer (CRC) cells. Results show that mRNA and activated levels of cathepsin B were both increased in human adenomas and in CRCs of all stages. Treatment of CRC cells with the highly selective and non-permeant cathepsin B inhibitor Ca074 revealed that extracellular cathepsin B actively contributed to the invasiveness of human CRC cells while not essential for their growth in soft agar. Cathepsin B silencing by RNAi in human CRC cells inhibited their growth in soft agar, as well as their invasion capacity, tumoral expansion, and metastatic spread in immunodeficient mice. Higher levels of the cell cycle inhibitor p27(Kip1) were observed in cathepsin B-deficient tumors as well as an increase in cyclin B1. Finally, cathepsin B colocalized with p27(Kip1) within the lysosomes and efficiently degraded the inhibitor. In conclusion, the present data demonstrate that cathepsin B is a significant factor in colorectal tumor development, invasion, and metastatic spreading and may, therefore, represent a potential pharmacological target for colorectal tumor therapy.


Assuntos
Carcinogênese/genética , Catepsina B/genética , Catepsina B/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Animais , Células CACO-2 , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Dipeptídeos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias
18.
J Cell Physiol ; 231(2): 436-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26174178

RESUMO

The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment.


Assuntos
Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Mucosa Intestinal/enzimologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Colite/enzimologia , Colite/genética , Colite/patologia , Dano ao DNA , Modelos Animais de Doenças , Células Epiteliais/enzimologia , Células Caliciformes/citologia , Células Caliciformes/enzimologia , Histona Desacetilase 1/deficiência , Histona Desacetilase 1/genética , Histona Desacetilase 2/deficiência , Histona Desacetilase 2/genética , Homeostase , Imunidade nas Mucosas , Mucosa Intestinal/anormalidades , Mucosa Intestinal/citologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Notch/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
19.
Int J Oncol ; 43(6): 2015-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100580

RESUMO

The transcription factor E2F4 plays a critical role in cell cycle progression of normal and cancerous intestinal epithelial cells. Contrary to other E2Fs, the coding region of the E2F4 gene contains a longer spacer segment of a CAG trinucleotide repeat sequence encoding 13 consecutive serine residues, which is highly vulnerable to frameshift mutations in situations of genetic instability. Mutations in this region of the E2F4 gene have been observed in colorectal tumors with microsatellite instability. However, the effect of these changes on its function in colorectal cancer cells is currently unknown. We generated E2F4(CAG)12 and E2F4(CAG)14 mutants and compared their activity to the E2F4 wild-type, E2F4(CAG)13. Luciferase assays with the thymidine kinase-luc reporter gene revealed that the mutants were more transcriptionally active than wild-type E2F4. The mechanism of increased activity of E2F4 was primarily related to protein stability, due to a significantly enhanced half-life of E2F4 mutants comparatively to that of wild-type E2F4. However, the association with the pocket protein p130/RBL2 did not account for this increased protein stability. Sequencing analysis of the endogenous E2F4 gene in a series of colorectal cancer cell lines showed that the microsatellite-unstable cell line SW48 exhibited a serine deletion in this gene. Accordingly, E2F4 half-life was much more elevated in SW48 cells in comparison to Caco-2/15, a microsatellite-stable cell line. Notably, in soft-agar assays, both mutants more potently increased anchorage-independent growth in comparison to wild-type E2F4. In conclusion, our data demonstrate that cancer-associated E2F4 mutations enhance the capacity of colorectal cancer cells to grow without anchorage, thereby contributing to tumor progression.


Assuntos
Neoplasias Colorretais/genética , Fator de Transcrição E2F4/genética , Instabilidade de Microssatélites , Proteína p130 Retinoblastoma-Like/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Células CACO-2 , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Mutação/genética , Proteína p130 Retinoblastoma-Like/genética , Análise de Sequência de DNA , Transcrição Gênica/genética , Repetições de Trinucleotídeos/genética
20.
BMC Cell Biol ; 14: 33, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23919615

RESUMO

BACKGROUND: The transcription factor E2F4 controls proliferation of normal and cancerous intestinal epithelial cells. E2F4 localization in normal human intestinal epithelial cells (HIEC) is cell cycle-dependent, being cytoplasmic in quiescent differentiated cells but nuclear in proliferative cells. However, the intracellular signaling mechanisms regulating such E2F4 localization remain unknown. RESULTS: Treatment of quiescent HIEC with serum induced ERK1/2 activation, E2F4 phosphorylation, E2F4 nuclear translocation and G1/S phase transition while inhibition of MEK/ERK signaling by U0126 prevented these events. Stimulation of HIEC with epidermal growth factor (EGF) also led to the activation of ERK1/2 but, in contrast to serum or lysophosphatidic acid (LPA), EGF failed to induce E2F4 phosphorylation, E2F4 nuclear translocation and G1/S phase transition. Furthermore, Akt and GSK3ß phosphorylation levels were markedly enhanced in serum- or LPA-stimulated HIEC but not by EGF. Importantly, E2F4 phosphorylation, E2F4 nuclear translocation and G1/S phase transition were all observed in response to EGF when GSK3 activity was concomitantly inhibited by SB216763. Finally, E2F4 was found to be overexpressed, phosphorylated and nuclear localized in epithelial cells from human colorectal adenomas exhibiting mutations in APC and KRAS or BRAF genes, known to deregulate GSK3/ß-catenin and MEK/ERK signaling, respectively. CONCLUSIONS: The present results indicate that MEK/ERK activation and GSK3 inhibition are both required for E2F4 phosphorylation as well as its nuclear translocation and S phase entry in HIEC. This finding suggests that dysregulated E2F4 nuclear localization may be an instigating event leading to hyperproliferation and hence, of tumor initiation and promotion in the colon and rectum.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator de Transcrição E2F4/efeitos dos fármacos , Fator de Transcrição E2F4/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Mitógenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Adenoma/metabolismo , Adenoma/patologia , Butadienos/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Linhagem Celular , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Fator de Transcrição E2F4/genética , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA