Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 12: 650769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305630

RESUMO

Diseases, such as diabetes and hypertension, often lead to chronic kidney failure. The peptide hormone relaxin has been shown to have therapeutic effects in various organs. In the present study, we tested the hypothesis that ML290, a small molecule agonist of the human relaxin receptor (RXFP1), is able to target the kidney to remodel the extracellular matrix and reduce apoptosis induced by unilateral ureteral obstruction (UUO). UUO was performed on the left kidney of humanized RXFP1 mice, where the right kidneys served as contralateral controls. Mice were randomly allocated to receive either vehicle or ML290 (30 mg/kg) via daily intraperitoneal injection, and kidneys were collected for apoptosis, RNA, and protein analyses. UUO significantly increased expression of pro-apoptotic markers in both vehicle- and ML290-treated mice when compared to their contralateral control kidneys. Specifically, Bax expression and Erk1/2 activity were upregulated, accompanied by an increase of TUNEL-positive cells in the UUO kidneys. Additionally, UUO induced marked increase in myofibroblast differentiation and aberrant remodeling on the extracellular matrix. ML290 suppressed these processes by promoting a reduction of pro-apoptotic, fibroblastic, and inflammatory markers in the UUO kidneys. Finally, the potent effects of ML290 to remodel the extracellular matrix were demonstrated by its ability to reduce collagen gene expression in the UUO kidneys. Our data indicate that daily administration of ML290 has renal protective effects in the UUO mouse model, specifically through its anti-apoptotic and extracellular matrix remodeling properties.

2.
Cancer Discov ; 11(9): 2200-2215, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33741710

RESUMO

More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Proteínas de Ligação a DNA/genética , Ependimoma/genética , Neoplasias Supratentoriais/genética , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Ependimoma/patologia , Camundongos , Neoplasias Supratentoriais/patologia
3.
FASEB J ; 33(11): 12435-12446, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419161

RESUMO

Fibrosis is an underlying cause of cirrhosis and hepatic failure resulting in end stage liver disease with limited pharmacological options. The beneficial effects of relaxin peptide treatment were demonstrated in clinically relevant animal models of liver fibrosis. However, the use of relaxin is problematic because of a short half-life. The aim of this study was to test the therapeutic effects of recently identified small molecule agonists of the human relaxin receptor, relaxin family peptide receptor 1 (RXFP1). The lead compound of this series, ML290, was selected based on its effects on the expression of fibrosis-related genes in primary human stellate cells. RNA sequencing analysis of TGF-ß1-activated LX-2 cells showed that ML290 treatment primarily affected extracellular matrix remodeling and cytokine signaling, with expression profiles indicating an antifibrotic effect of ML290. ML290 treatment in human liver organoids with LPS-induced fibrotic phenotype resulted in a significant reduction of type I collagen. The pharmacokinetics of ML290 in mice demonstrated its high stability in vivo, as evidenced by the sustained concentrations of compound in the liver. In mice expressing human RXFP1 gene treated with carbon tetrachloride, ML290 significantly reduced collagen content, α-smooth muscle actin expression, and cell proliferation around portal ducts. In conclusion, ML290 demonstrated antifibrotic effects in liver fibrosis.-Kaftanovskaya, E. M., Ng, H. H., Soula, M., Rivas, B., Myhr, C., Ho, B. A., Cervantes, B. A., Shupe, T. D., Devarasetty, M., Hu, X., Xu, X., Patnaik, S., Wilson, K. J., Barnaeva, E., Ferrer, M., Southall, N. T., Marugan, J. J., Bishop, C. E., Agoulnik, I. U., Agoulnik, A. I. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis.


Assuntos
Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Peptídeos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Intoxicação por Tetracloreto de Carbono/genética , Linhagem Celular Transformada , Proliferação de Células/genética , Citocinas/genética , Citocinas/metabolismo , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Camundongos Transgênicos , Organoides/metabolismo , Organoides/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Transdução de Sinais/genética
4.
Genesis ; 52(4): 328-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443144

RESUMO

As a dual function protein, ß-catenin affects both cell adhesion and mediates canonical Wnt/ß-catenin cell signaling. ß-Catenin is prominently expressed in somatic Sertoli cells in the testis and postmeiotic germ cells, suggesting an additional role in spermatogenesis. It was reported previously that Cre/loxP-mediated conditional inactivation of the ß-catenin gene (Ctnnb1) in male gonads using a protamine promoter-driven Cre transgene (Prm-cre) resulted in partial infertility, reduced sperm count, and abnormal spermatogenesis. In this report, we demonstrated that the conditional deletion of Ctnnb1 using a germ cell specific Cre transgene (Stra8-icre) had no effect on male fertility. We have shown that the Stra8-icre transgene was highly efficient in generating deletion in early pre-meiotic and post-meiotic cells. No differences in anatomical or histological presentation were found in the mutant testis, the production of viable sperm was similar, and no abnormalities in DNA sperm content were detected. We concluded that ß-catenin is fully dispensable in germ cells for spermatogenesis. The conflicting results from the earlier study may have been due to off-target expression of Prm-cre in testicular somatic cells. In future studies, the analysis of conditional mutants using several Cre-transgenes should be encouraged to reduce potential errors.


Assuntos
Fertilidade , Espermatozoides/metabolismo , beta Catenina/genética , Animais , Animais não Endogâmicos , Epididimo/anatomia & histologia , Feminino , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho do Órgão , Glândulas Seminais/anatomia & histologia , Espermatogênese , Testículo/anatomia & histologia , Testículo/citologia , beta Catenina/metabolismo
5.
PLoS One ; 8(7): e71213, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936265

RESUMO

NOTCH1 is a member of the NOTCH receptor family, a group of single-pass trans-membrane receptors. NOTCH signaling is highly conserved in evolution and mediates communication between adjacent cells. NOTCH receptors have been implicated in cell fate determination, as well as maintenance and differentiation of stem cells. In the mammalian testis expression of NOTCH1 in somatic and germ cells has been demonstrated, however its role in spermatogenesis was not clear. To study the significance of NOTCH1 in germ cells, we applied a cre/loxP approach in mice to induce NOTCH1 gain- or loss-of function specifically in male germ cells. Using a Stra8-icre transgene we produced mice with conditional activation of the NOTCH1 intracellular domain (NICD) in germ cells. Spermatogenesis in these mutants was progressively affected with age, resulting in decreased testis weight and sperm count. Analysis of downstream target genes of NOTCH1 signaling showed an increased expression of Hes5, with a reduction of the spermatogonial differentiation marker, Neurog3 expression in the mutant testis. Apoptosis was significantly increased in mouse germ cells with the corresponding elevation of pro-apoptotic Trp53 and Trp63 genes' expression. We also showed that the conditional germ cell-specific ablation of Notch1 had no effect on spermatogenesis or male fertility. Our data suggest the importance of NOTCH signaling regulation in male germ cells for their survival and differentiation.


Assuntos
Células Germinativas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Espermatogênese/genética , Animais , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fertilidade/genética , Deleção de Genes , Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Testículo/citologia , Testículo/metabolismo
6.
Ital J Anat Embryol ; 118(1 Suppl): 32-3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24640567

RESUMO

Global ablation of INSL3 hormone or its receptor RXFP2 in male mice results in cryptorchidism and infertility. Using novel LacZ knock-in Rxfp2 allele we demonstrated a strong expression of this gene in postmeiotic germ cells. RXFP2 was expressed in embryonic and neonatal gubernaculum. No RXFP2 expression was detected in cremaster muscles in adult mice. We produced a floxed allele of Rxfp2 and then deleted this gene in male germ cells in testes located in normal scrotal position. No differences in fertility or spermatogenesis of such males were found, suggesting non-essential role of INSL3 signaling in germ cell differentiation in adult males. We have also produced shRNA transgenic mice with reduced RXFP2 expression Such males manifested various degree of uni- and bilateral cryptorchidism. Total gene expression analysis of the mutant cremasteric sacs indicated misexpression of a significant number of genes in Wnt/beta-catenin and NOTCH pathways. Conditional deletion of beta-catenin or Notch1 genes in male gubernacular ligament resulted in its abnormal development. Our data suggest that beta-catenin and NOTCH1 pathways are potential targets of INSL3 signaling during gubernacular development.


Assuntos
Insulina/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Testículo/metabolismo , Animais , Masculino , Camundongos , Receptor Notch1/metabolismo
7.
Biol Reprod ; 87(6): 143, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23100620

RESUMO

Relaxin family peptide receptor 2 (RXFP2) is the cognate receptor of a peptide hormone insulin-like 3 (INSL3). INSL3 is expressed at high levels in both fetal and adult Leydig cells. Deletion of Insl3 or Rxfp2 genes in mice caused cryptorchidism resulting from a failure of gubernaculum development. Using a novel mouse transgenic line with a knock-in LacZ reporter in the Rxfp2 locus, we detected a robust Rxfp2 expression in embryonic and early postnatal gubernaculum in males and in postmeiotic spermatogenic cells in adult testis. To study the role of INSL3/RXFP2 signaling in male reproduction, we produced a floxed Rxfp2 allele and used the Cre/loxP approach to delete Rxfp2 in different tissues. Using Cre transgene driven by retinoic acid receptor beta promoter, conditional gene targeting in gubernacular mesenchymal cells at early embryonic stages caused high intraabdominal cryptorchidism as in males with a global deletion of Rxfp2. However, when the Rxfp2 was deleted in gubernacular smooth or striated muscle cells, no abnormalities of testicular descent or testis development were found. Specific ablation of Rxfp2 in male germ cells using Stra8-icre transgene did not affect testis descent, spermatogenesis, or fertility in adult males. No significant change in germ cell apoptosis was detected in mutant males. In summary, our data indicate that the INSL3/RXFP2 signaling is important for testicular descent but dispensable for spermatogenesis and fertility in adult males.


Assuntos
Criptorquidismo/genética , Insulina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Maturidade Sexual , Transdução de Sinais , Espermatogênese , Testículo/crescimento & desenvolvimento , Animais , Apoptose , Sobrevivência Celular , Cruzamentos Genéticos , Criptorquidismo/metabolismo , Criptorquidismo/patologia , Genes Reporter , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Insulina/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Proteínas/genética , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Espermatozoides/patologia , Testículo/citologia , Testículo/metabolismo , Testículo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA