Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 42(4): 112332, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37002921

RESUMO

The metabolic plasticity of mitochondria ensures cell development, differentiation, and survival. The peptidase OMA1 regulates mitochondrial morphology via OPA1 and stress signaling via DELE1 and orchestrates tumorigenesis and cell survival in a cell- and tissue-specific manner. Here, we use unbiased systems-based approaches to show that OMA1-dependent cell survival depends on metabolic cues. A metabolism-focused CRISPR screen combined with an integrated analysis of human gene expression data found that OMA1 protects against DNA damage. Nucleotide deficiencies induced by chemotherapeutic agents promote p53-dependent apoptosis of cells lacking OMA1. The protective effect of OMA1 does not depend on OMA1 activation or OMA1-mediated OPA1 and DELE1 processing. OMA1-deficient cells show reduced glycolysis and accumulate oxidative phosphorylation (OXPHOS) proteins upon DNA damage. OXPHOS inhibition restores glycolysis and confers resistance against DNA damage. Thus, OMA1 dictates the balance between cell death and survival through the control of glucose metabolism, shedding light on its role in cancerogenesis.


Assuntos
Metaloendopeptidases , Peptídeo Hidrolases , Humanos , DNA/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Peptídeo Hidrolases/metabolismo
2.
Nat Cell Biol ; 25(3): 467-480, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690850

RESUMO

Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.


Assuntos
Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Chaperonas Moleculares/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
Cell Metab ; 34(11): 1875-1891.e7, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113464

RESUMO

Cardiomyopathy and heart failure are common manifestations in mitochondrial disease caused by deficiencies in the oxidative phosphorylation (OXPHOS) system of mitochondria. Here, we demonstrate that the cardiac-specific loss of the assembly factor Cox10 of the cytochrome c oxidase causes mitochondrial cardiomyopathy in mice, which is associated with OXPHOS deficiency, lysosomal defects, and an aberrant mitochondrial morphology. Activation of the mitochondrial peptidase Oma1 in Cox10-/- mice results in mitochondrial fragmentation and induction of the integrated stress response (ISR) along the Oma1-Dele1-Atf4 signaling axis. Ablation of Oma1 or Dele1 in Cox10-/- mice aggravates cardiomyopathy. ISR inhibition impairs the cardiac glutathione metabolism, limits the selenium-dependent accumulation of the glutathione peroxidase Gpx4, and increases lipid peroxidation in the heart, ultimately culminating in ferroptosis. Our results demonstrate a protective role of the Oma1-Dele1-mediated ISR in mitochondrial cardiomyopathy and link ferroptosis to OXPHOS deficiency and mitochondrial disease.


Assuntos
Alquil e Aril Transferases , Cardiomiopatias , Ferroptose , Camundongos , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cardiomiopatias/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo
4.
Cell Death Differ ; 27(9): 2586-2604, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152556

RESUMO

Angiotensin-(1-9) is a peptide from the noncanonical renin-angiotensin system with anti-hypertrophic effects in cardiomyocytes via an unknown mechanism. In the present study we aimed to elucidate it, basing us initially on previous work from our group and colleagues who proved a relationship between disturbances in mitochondrial morphology and calcium handling, associated with the setting of cardiac hypertrophy. Our first finding was that angiotensin-(1-9) can induce mitochondrial fusion through DRP1 phosphorylation. Secondly, angiotensin-(1-9) blocked mitochondrial fission and intracellular calcium dysregulation in a model of norepinephrine-induced cardiomyocyte hypertrophy, preventing the activation of the calcineurin/NFAT signaling pathway. To further investigate angiotensin-(1-9) anti-hypertrophic mechanism, we performed RNA-seq studies, identifying the upregulation of miR-129 under angiotensin-(1-9) treatment. miR-129 decreased the transcript levels of the protein kinase A inhibitor (PKIA), resulting in the activation of the protein kinase A (PKA) signaling pathway. Finally, we showed that PKA activity is necessary for the effects of angiotensin-(1-9) over mitochondrial dynamics, calcium handling and its anti-hypertrophic effects.


Assuntos
Angiotensina I/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Dinaminas/metabolismo , Hipertrofia , MicroRNAs/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Miócitos Cardíacos/ultraestrutura , Fatores de Transcrição NFATC/metabolismo , Norepinefrina/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
5.
J Mol Cell Cardiol ; 118: 110-121, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518398

RESUMO

AIMS: Considerable evidence points to critical roles of intracellular Ca2+ homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy. PC2 has been associated with impaired Ca2+ handling in cardiomyocytes and indirect evidence suggests that this protein may be involved in autophagic control. Here, we investigated the role for PC2 as an essential regulator of Ca2+ homeostasis and autophagy. METHODS AND RESULTS: Activation of autophagic flux triggered by mTOR inhibition either pharmacologically (rapamycin) or by means of nutrient depletion was suppressed in cells depleted of PC2. Moreover, cardiomyocyte-specific PC2 knockout mice (αMhc-cre;Pkd2F/F mice) manifested impaired autophagic flux in the setting of nutrient deprivation. Stress-induced autophagy was blunted by intracellular Ca2+ chelation using BAPTA-AM, whereas removal of extracellular Ca2+ had no effect, pointing to a role of intracellular Ca2+ homeostasis in stress-induced cardiomyocyte autophagy. To determine the link between stress-induced autophagy and PC2-induced Ca2+ mobilization, we over-expressed either wild-type PC2 (WT) or a Ca2+-channel deficient PC2 mutant (PC2-D509V). PC2 over-expression increased autophagic flux, whereas PC2-D509V expression did not. Importantly, autophagy induction triggered by PC2 over-expression was attenuated by BAPTA-AM, supporting a model of PC2-dependent control of autophagy through intracellular Ca2+. Furthermore, PC2 ablation was associated with impaired Ca2+ handling in cardiomyocytes marked by partial depletion of sarcoplasmic reticulum Ca2+ stores. Finally, we provide evidence that Ca2+-mediated autophagy elicited by PC2 is a mechanism conserved across multiple cell types. CONCLUSION: Together, this study unveils PC2 as a novel regulator of autophagy acting through control of intracellular Ca2+ homeostasis.


Assuntos
Autofagia , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cálcio/metabolismo , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Estresse Mecânico
6.
J Cell Sci ; 127(Pt 12): 2659-71, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24777478

RESUMO

Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca(2+), activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling.


Assuntos
Calcineurina/metabolismo , Mitocôndrias Cardíacas/fisiologia , Dinâmica Mitocondrial , Miócitos Cardíacos/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomegalia/metabolismo , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases , Hipertrofia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Norepinefrina/farmacologia , Transporte Proteico , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo
7.
Biochem Biophys Res Commun ; 446(1): 410-6, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24613839

RESUMO

Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)-mitochondria communication, as it allows for a more efficient transfer of Ca(2+) into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER-mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3h of GLP-1 treatment, paralleled by increased Ca(2+) transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca(2+) increases in GLP-1 treated cells. Inhibiting both Ca(2+) release from the ER and Ca(2+) entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER-mitochondria communication in VSMC, resulting in higher mitochondrial activity.


Assuntos
Retículo Endoplasmático/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mitocôndrias/metabolismo , Miócitos de Músculo Liso/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GTP Fosfo-Hidrolases , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose/metabolismo , Glicogênio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ratos , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo
8.
J Cell Biochem ; 115(4): 712-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24243530

RESUMO

In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gßγ signaling, ßARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, ßARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and ß-myosin heavy chain (ß-MHC), was prevented by AG538, PTX, ßARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/ßγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin.


Assuntos
Cálcio/metabolismo , Cardiomegalia/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Miócitos Cardíacos/patologia , Animais , Calcineurina/genética , Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Catecóis/farmacologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos/genética , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Subunidades Proteicas , Ratos Sprague-Dawley , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes/genética , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA