Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mucosal Immunol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244090

RESUMO

The impact of dietary fiber on intestinal T cell development is poorly understood. Here we show that a low fiber diet reduces MHC-II antigen presentation by small intestinal epithelial cells (IECs) and consequently impairs development of CD4+CD8αα+ intraepithelial lymphocytes (DP IELs) through changes to the microbiota. Dietary fiber supports colonization by Segmented Filamentous Bacteria (SFB), which induces the secretion of IFNγ by type 1 innate lymphoid cells (ILC1s) that lead to MHC-II upregulation on IECs. IEC MHC-II expression caused either by SFB colonization or exogenous IFNγ administration induced differentiation of DP IELs. Finally, we show that a low fiber diet promotes overgrowth of Bifidobacterium pseudolongum, and that oral administration of B. pseudolongum reduces SFB abundance in the small intestine. Collectively we highlight the importance of dietary fiber in maintaining the balance among microbiota members that allow IEC MHC-II antigen presentation and define a mechanism of microbiota-ILC-IEC interactions participating in the development of intestinal intraepithelial T cells.

2.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791429

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive and highly metastatic type of tumor. TNBC is often enriched in tumor-infiltrating neutrophils (TINs), which support cancer growth in part by counteracting tumor-infiltrating lymphocytes (TILs). Prior studies identified the enhancer of zeste homolog 2 (EZH2) as a pro-tumor methyltransferase in primary and metastatic TNBCs. We hypothesized that EZH2 inhibition in TNBC cells per se would exert antitumor activity by altering the tumor immune microenvironment. To test this hypothesis, we used CRISPR to generate EZH2 gene knockout (KO) and overexpressing (OE) lines from parent (wild-type-WT) 4T1 cells, an established murine TNBC model, resulting in EZH2 protein KO and OE, respectively. In vitro, EZH2 KO and OE cells showed early, transient changes in replicative capacity and invasiveness, and marked changes in surface marker profile and cytokine/chemokine secretion compared to WT cells. In vivo, EZH2 KO cells showed significantly reduced primary tumor growth and a 10-fold decrease in lung metastasis compared to WT cells, while EZH2 OE cells were unchanged. Compared to WT tumors, TIN:TIL ratios were greatly reduced in EZH2 KO tumors but unchanged in EZH2 OE tumors. Thus, EZH2 is key to 4T1 aggressiveness as its tumor-intrinsic knockout alters their in vitro secretome and in vivo primary tumor growth, TIN/TIL poise, and metastasis.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Pulmonares , Linfócitos do Interstício Tumoral , Neoplasias de Mama Triplo Negativas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Animais , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/imunologia , Camundongos , Feminino , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Microambiente Tumoral/imunologia , Proliferação de Células , Humanos , Camundongos Endogâmicos BALB C , Técnicas de Inativação de Genes , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica
3.
Cell Rep ; 42(10): 113140, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37768824

RESUMO

Dietary fiber strongly impacts the microbiota. Here, we show that a low-fiber diet changes the small intestinal (SI) microbiota and impairs SI Th17, TCRαß+CD8αß+ and TCRαß+CD8αα+ intraepithelial T cell development. We restore T cell development with dietary fiber supplementation, but this defect becomes persistent over generations with constant low-fiber diets. Offspring of low-fiber diet-fed mice have reduced SI T cells even after receiving a fiber-rich diet due to loss of bacteria important for T cell development. In these mice, only a microbiota transplant from a fiber-rich diet-fed mouse and a fiber-rich diet can restore T cell development. Low-fiber diets reduce segmented filamentous bacteria (SFB) abundance, impairing its vertical transmission. SFB colonization and a fiber-rich diet partially restore T cell development. Finally, we observe that low-fiber diet-induced T cell defects render mice more susceptible to Citrobacter rodentium infection. Together, these results demonstrate the importance of fiber to microbiota vertical transmission and host immune system development.


Assuntos
Microbioma Gastrointestinal , Linfócitos Intraepiteliais , Microbiota , Camundongos , Animais , Intestino Delgado/microbiologia , Receptores de Antígenos de Linfócitos T alfa-beta , Mucosa Intestinal/microbiologia , Fibras na Dieta , Camundongos Endogâmicos C57BL
4.
Front Toxicol ; 32021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34109323

RESUMO

Methamphetamine (METH) is a substance of abuse that causes dysregulation of the innate and adaptive immunity in users. B cells are involved in the humoral component of the adaptive immunity by producing and secreting antibodies (Abs). METH modifies Ab production, although limited information on the impact of this psychostimulant on antigen (Ag)-specific humoral immune responses is available. Since T cell-dependent and T cell-independent Ags are involved in the activation of B lymphocytes, we explored the role of METH on humoral immunity to ovalbumin (OVA; T cell-dependent) and bacterial lipopolysaccharide (LPS; T cell-independent) in C57BL/6 mice. We demonstrated that METH extends the infiltration of B cells into pulmonary and splenic tissues 7 days post-Ag challenge. METH impairs Ab responses in the blood of animals challenged with OVA and LPS. Furthermore, METH diminishes the expression and distribution of IgM on B cell surface, suggesting a possible detrimental impact on users' humoral immunity to infection or autoimmunity.

5.
Mol Immunol ; 121: 159-166, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32222586

RESUMO

Methamphetamine (METH) is a major public health and safety problem worldwide. METH is psychostimulant that activates microglia via the toll-like receptor (TLR) 4/MD2 complex, modulating the abundant production of pro-inflammatory cytokines in the central nervous system (CNS). The TLR4/MD2 complex on the surface of microglia recognizes pathogen-associated molecular patterns such as lipopolysaccharide (LPS) resulting in brain tissue inflammation and neuronal damage. Since METH has been associated with microglia-induced neurotoxicity, we hypothesized that METH impairs the expression of TLR4 and activation of NF-κB in NR-9460 microglia-like cells after LPS challenge. We demonstrated that METH decreases the distribution and expression of TLR4 receptors on the surface of microglia-like cells after incubation with endotoxin. Moreover, METH impairs the TLR4/MD2 complex signaling pathways, compromises the activation of NF-κB, and reduces the production of pro-inflammatory mediators in microglia-like cells upon LPS stimulation. Interestingly, microglia-like cells treated with METH and challenged with LPS showed considerable cellular morphological changes including enlarged nuclei and ruffled surface. Our results suggest that METH may have a significant impact on microglial-induced neuroinflammation, neurotoxicity, and the CNS defense against infection. It also highlights the importance of studying the effects of METH on the molecular and cellular components of users' CNS immunity. Finally, animal studies exploring the role of METH on the effectors functions of microglia after antigenic exposure are necessary to understand drug-related inflammation and neural damage in users.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Encefalite/induzido quimicamente , Metanfetamina/toxicidade , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Citocinas/imunologia , Citocinas/metabolismo , Encefalite/imunologia , Encefalite/patologia , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Microglia/citologia , Microglia/imunologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA