Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Parasit Vectors ; 16(1): 14, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639683

RESUMO

BACKGROUND: Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. METHODS: We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. RESULTS: We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48 h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. CONCLUSIONS: Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples. The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation.


Assuntos
Genes de Protozoários , Plasmodium falciparum , Humanos , Antimaláricos/metabolismo , Malária , Plasmodium falciparum/genética , Reprodução
2.
EMBO Rep ; 23(7): e54755, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35642585

RESUMO

Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.


Assuntos
Vesículas Extracelulares , Malária , Parasitos , Animais , Eritrócitos/parasitologia , Vesículas Extracelulares/metabolismo , Humanos , Plasmodium falciparum
3.
Nat Commun ; 12(1): 4851, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381047

RESUMO

Pathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf 'decision-sensing-system' controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3'UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape.


Assuntos
Quimiocina CXCL10/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Regiões 3' não Traduzidas , Quimiocina CXCL10/genética , Proteína DEAD-box 58/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Parasita , Humanos , Estágios do Ciclo de Vida , Malária Falciparum/imunologia , Monócitos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Biossíntese de Proteínas , RNA de Protozoário/metabolismo , Receptores Imunológicos/metabolismo , Ribossomos/metabolismo , Células THP-1
4.
Cell Microbiol ; 21(7): e13021, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30835870

RESUMO

Protozoan pathogens secrete nanosized particles called extracellular vesicles (EVs) to facilitate their survival and chronic infection. Here, we show the inhibition by Plasmodium berghei NK65 blood stage-derived EVs of the proliferative response of CD4+ T cells in response to antigen presentation. Importantly, these results were confirmed in vivo by the capacity of EVs to diminish the ovalbumin-specific delayed type hypersensitivity response. We identified two proteins associated with EVs, the histamine releasing factor (HRF) and the elongation factor 1α (EF-1α) that were found to have immunosuppressive activities. Interestingly, in contrast to WT parasites, EVs from genetically HRF- and EF-1α-deficient parasites failed to inhibit T cell responses in vitro and in vivo. At the level of T cells, we demonstrated that EVs from WT parasites dephosphorylate key molecules (PLCγ1, Akt, and ERK) of the T cell receptor signalling cascade. Remarkably, immunisation with EF-1α alone or in combination with HRF conferred a long-lasting antiparasite protection and immune memory. In conclusion, we identified a new mechanism by which P. berghei-derived EVs exert their immunosuppressive functions by altering T cell responses. The identification of two highly conserved immune suppressive factors offers new conceptual strategies to overcome EV-mediated immune suppression in malaria-infected individuals.


Assuntos
Biomarcadores Tumorais/genética , Vesículas Extracelulares/imunologia , Malária/genética , Fator 1 de Elongação de Peptídeos/genética , Animais , Apresentação de Antígeno/imunologia , Antígenos/genética , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Proliferação de Células/genética , Vesículas Extracelulares/genética , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Malária/parasitologia , Malária/patologia , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade , Linfócitos T/imunologia , Linfócitos T/parasitologia , Proteína Tumoral 1 Controlada por Tradução
5.
Methods ; 112: 157-166, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27350362

RESUMO

Malaria is the most devastating parasitic disease of humans, caused by the unicellular protozoa of the Plasmodium genus, such as Plasmodium falciparum (Pf) and is responsible for up to a million deaths each year. Pf life cycle is complex, with transmission of the parasite between humans via mosquitos involving a remarkable series of morphological transformations. In the bloodstream, the parasites undergo asexual multiplications inside the red blood cell (RBC), where they mature through the ring (R), trophozoite (T) and schizont (S) stages, and sexual development, resulting in gametocytes (G). All symptoms of malaria pathology are caused by the asexual blood stage parasites. Flow cytometry methods were previously used to detect malaria infected (i) RBCs, in live or fixed cells, using DNA (Hoechst) and RNA (Thiazole Orange) stains. Here, by using imaging flow cytometry, we developed improved methods of identifying and quantifying each of the four parasite blood stages (R, T, S and G). This technique allows multi-channel, high resolution imaging of individual parasites, as well as detailed morphological quantification of Pf-iRBCs cultures. Moreover, by measuring iRBC morphological properties, we can eliminate corrupted and extracellular (dying) parasites from the analysis, providing accurate quantification and robust measurement of the parasitemia profile. This new method is a valuable tool in malaria molecular biology research and drug screen assays.


Assuntos
Eritrócitos/parasitologia , Citometria de Fluxo/métodos , Citometria por Imagem/métodos , Estágios do Ciclo de Vida/fisiologia , Plasmodium falciparum/crescimento & desenvolvimento , Coloração e Rotulagem/métodos , Corantes Azur/química , Benzimidazóis/química , Benzotiazóis/química , Células Cultivadas , Eritrócitos/ultraestrutura , Corantes Fluorescentes/química , Humanos , Plasmodium falciparum/ultraestrutura , Quinolinas/química
6.
Trends Parasitol ; 33(1): 2-4, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889370

RESUMO

During its life cycle, the malaria parasite must cope with a set of diverse environments and institute strategies to alter its host's responses. A recent study remarkably demonstrates how these parasites exploit red blood cell products, loading them into 'armed' secreted vesicles sent to manipulate their host's 'endothelium battlefront', thereby promoting malaria infection.


Assuntos
Interações Hospedeiro-Parasita , Malária/parasitologia , Plasmodium/fisiologia , Comunicação Celular , Células Endoteliais/parasitologia , Eritrócitos/parasitologia , Vesículas Extracelulares , Humanos , Malária/imunologia , Malária/transmissão
7.
J Antimicrob Chemother ; 71(4): 946-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26747101

RESUMO

OBJECTIVES: During recent decades, the number of invasive fungal infections among immunosuppressed patients has increased significantly, whereas the number of effective systemic antifungal drugs remains low and unsatisfactory. The aim of this study was to characterize a novel antifungal compound, CW-8/haemofungin, which we previously identified in a screen for compounds affecting fungal cell wall integrity. METHODS: The in vitro characteristics of haemofungin were investigated by MIC evaluation against a panel of pathogenic and non-pathogenic fungi, bacteria and mammalian cells in culture. Haemofungin mode-of-action studies were performed by screening an Aspergillus nidulans overexpression genomic library for resistance-conferring plasmids and biochemical validation of the target. In vivo efficacy was tested in the Galleria mellonella and Drosophila melanogaster insect models of infection. RESULTS: We demonstrate that haemofungin causes swelling and lysis of growing fungal cells. It inhibits the growth of pathogenic Aspergillus, Candida, Fusarium and Rhizopus isolates at micromolar concentrations, while only weakly affecting the growth of mammalian cell lines. Genetic and biochemical analyses in A. nidulans and Aspergillus fumigatus indicate that haemofungin primarily inhibits ferrochelatase (HemH), the last enzyme in the haem biosynthetic pathway. Haemofungin was non-toxic and significantly reduced mortality rates of G. mellonella and D. melanogaster infected with A. fumigatus and Rhizopus oryzae, respectively. CONCLUSIONS: Further development and in vivo validation of haemofungin is warranted.


Assuntos
Antifúngicos/farmacologia , Heme/antagonistas & inibidores , Heme/biossíntese , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Animais , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Farmacorresistência Fúngica , Sinergismo Farmacológico , Ferroquelatase/antagonistas & inibidores , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Humanos , Insetos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Protoporfirinas/biossíntese
8.
Am J Health Syst Pharm ; 71(21): 1845-57, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25320134

RESUMO

PURPOSE: Commonly used nonopioid analgesic agents that are incorporated into multimodal perioperative pain management protocols in spinal surgery are reviewed. SUMMARY: Spinal procedures constitute perhaps some of most painful surgical interventions, as they often encompass extensive muscle dissection, tissue retraction, and surgical implants, as well as prolonged operative duration. Perioperative nonopioid analgesics frequently used in multimodal protocols include gabapentin, pregabalin, acetaminophen, dexamethasone, ketamine, and nonsteroidal antiinflammatory drugs (NSAIDs). There is evidence to suggest that gabapentin is safe and effective in reducing opioid consumption and pain scores at optimal doses of 600-900 mg orally administered preoperatively. Pregabalin 150-300 mg orally perioperatively has been shown to reduce both pain and narcotic consumption. Most reports concur that a single 1-g i.v. perioperative dose is safe in adults and that this dose has been shown to reduce pain and attenuate narcotic requirements. Dexamethasone's influence on postoperative pain has primarily been investigated for minor spinal procedures, with limited evidence for spinal fusions. Ketamine added to a patient-controlled analgesia regimen appears to be efficacious for 24 hours postoperatively when implemented for microdiskectomy and laminectomy procedures at doses of 1 mg/mL in a 1:1 mixture with morphine. For patients undergoing laminectomy or diskectomy, NSAIDs appear to be safe and effective in reducing pain scores and decreasing opioid consumption. CONCLUSION: Preemptive analgesic therapy combining nonopioid agents with opioids may reduce narcotic consumption and improve patient satisfaction after spinal surgery. Such therapy should be considered for patients undergoing various spinal procedures in which postoperative pain control has been historically difficult to achieve.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Manejo da Dor/métodos , Dor Pós-Operatória/prevenção & controle , Dor/tratamento farmacológico , Coluna Vertebral/cirurgia , Adulto , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/efeitos adversos , Anti-Inflamatórios não Esteroides , Humanos , Medição da Dor , Assistência Perioperatória
9.
J Atten Disord ; 16(8): 664-74, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22090395

RESUMO

OBJECTIVE: Preclinical models, receptor localization, and genetic linkage data support the role of D4 receptors in the etiology of ADHD. This proof-of-concept study was designed to evaluate MK-0929, a selective D4 receptor antagonist as treatment for adult ADHD. METHOD: A randomized, double-blind, placebo-controlled, crossover study was conducted in adults with primary ADHD. The primary end point was changed from baseline in total score on the Adult ADHD Investigator Symptom Rating Scale following a 4-week treatment regimen. Additional measures included Clinical Global Impression-Severity Scale, Hospital Anxiety and Depression Scale, and Brown Attention Deficit Disorder Scale and D4 genotype analysis. RESULTS: No statistically significant treatment differences were found between MK-0929 and placebo in any of the primary or secondary assessments. CONCLUSION: Results from this study suggest that blockade of the D4 receptor alone is not efficacious in the treatment of adult ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Antagonistas de Dopamina/uso terapêutico , Adolescente , Adulto , Estudos Cross-Over , Antagonistas de Dopamina/farmacologia , Método Duplo-Cego , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Índice de Gravidade de Doença , Resultado do Tratamento
10.
Mol Cell Neurosci ; 24(4): 887-901, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14697656

RESUMO

The vertebrate cerebellum is divided into a characteristic set of 13 parasagittal "bands" or modules that are revealed in many different domains-ranging from patterns of gene and protein expression to the organization of afferent input. We have used the expression of Zebrin II/aldolase C in Purkinje cells as a marker of these bands and have discovered several new features of their regulation. We find that appearance of the banded expression of aldolase C during development differs between rat and mouse. In agreement with previous reports there is, in rat, a transient period during which all Purkinje cells are positive for aldolase C expression. By contrast, in mouse, the pattern emerges in its adult (banded) form from the earliest postnatal times. This species difference is found in both mRNA and protein expression. There also appears to be a transition that occurs in vivo between postnatal days 8 and 10. Slice cultures established from cerebella at the younger age do not develop a complete banding pattern, even after 6 days in culture. Slice cultures established from postnatal day 10 mice develop the full pattern within 2 days. This difference cannot be overcome by manipulating the levels of neuronal activity in the cultures. Thus some event must occur in vivo that "releases" the adult pattern and allows it to be realized in the more artificial situation of the slice culture. Taken together the results offer a more complete picture of the regulation of the aldolase C gene in cerebellar Purkinje cells and suggest important species differences in its developmental expression pattern.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Animais , Animais Recém-Nascidos , Cerebelo/enzimologia , Frutose-Bifosfato Aldolase/biossíntese , Frutose-Bifosfato Aldolase/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA