Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Pathog ; 20(1): e1011914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166152

RESUMO

Chlamydia vaccine approaches aspire to induce Th1 cells for optimal protection, despite the fact that there is no direct evidence demonstrating Th1-mediated Chlamydia clearance from the female reproductive tract (FRT). We recently reported that T-bet-deficient mice can resolve primary Chlamydia infection normally, undermining the potentially protective role of Th1 cells in Chlamydia immunity. Here, we show that T-bet-deficient mice develop robust Th17 responses and that mice deficient in Th17 cells exhibit delayed bacterial clearance, demonstrating that Chlamydia-specific Th17 cells represent an underappreciated protective population. Additionally, Th2-deficient mice competently clear cervicovaginal infection. Furthermore, we show that sensing of IFN-γ by non-hematopoietic cells is essential for Chlamydia immunity, yet bacterial clearance in the FRT does not require IFN-γ secretion by CD4 T cells. Despite the fact that Th1 cells are not necessary for Chlamydia clearance, protective immunity to Chlamydia is still dependent on MHC class-II-restricted CD4 T cells and IL-12p40. Together, these data point to IL-12p40-dependent CD4 effector maturation as essential for Chlamydia immunity, and Th17 cells to a lesser extent, yet neither Th1 nor Th2 cell development is critical. Future Chlamydia vaccination efforts will be more effective if they focus on induction of this protective CD4 T cell population.


Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Animais , Feminino , Camundongos , Linfócitos T CD4-Positivos , Infecções por Chlamydia/genética , Infecções por Chlamydia/microbiologia , Subunidade p40 da Interleucina-12 , Camundongos Endogâmicos C57BL , Células Th1 , Células Th17 , Células Th2
2.
Proc Natl Acad Sci U S A ; 120(16): e2214699120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040404

RESUMO

Hepatic CD4 tissue-resident memory T cells (TRM) are required for robust protection against Salmonella infection; however, the generation of this T cell population is poorly understood. To interrogate the contribution of inflammation, we developed a simple Salmonella-specific T cell transfer system that allowed direct visualization of hepatic TRM formation. Salmonella-specific (SM1) T cell receptor (TCR) transgenic CD4 T cells were activated in vitro and adoptively transferred into C57BL/6 mice while hepatic inflammation was induced by acetaminophen overdose or L. monocytogenes infection. In both model systems, hepatic CD4 TRM formation was accentuated by local tissue responses. Liver inflammation also enhanced the suboptimal protection provided by a subunit Salmonella vaccine which typically induces circulating memory CD4 T cells. To further elucidate the mechanism of CD4 TRM formation in response to liver inflammation, various cytokines were examined by RNAseq, bone marrow chimeras, and in vivo neutralization. Surprisingly, IL-2 and IL-1 were found to enhance CD4 TRM formation. Thus, local inflammatory mediators enhance CD4 TRM populations and can boost the protective immunity provided by a suboptimal vaccine. This knowledge will be foundational for the development of a more effective vaccine against invasive nontyphoidal salmonellosis (iNTS).


Assuntos
Linfócitos T CD4-Positivos , Vacinas , Camundongos , Animais , Interleucina-2 , Memória Imunológica , Células T de Memória , Camundongos Endogâmicos C57BL , Fígado , Inflamação , Interleucina-1
3.
Cell Host Microbe ; 30(6): 836-847.e6, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568027

RESUMO

Changes in the microbiota composition are associated with many human diseases, but factors that govern strain abundance remain poorly defined. We show that a commensal Escherichia coli strain and a pathogenic Salmonella enterica serovar Typhimurium isolate both utilize nitrate for intestinal growth, but each accesses this resource in a distinct biogeographical niche. Commensal E. coli utilizes epithelial-derived nitrate, whereas nitrate in the niche occupied by S. Typhimurium is derived from phagocytic infiltrates. Surprisingly, avirulent S. Typhimurium was shown to be unable to utilize epithelial-derived nitrate because its chemotaxis receptors McpB and McpC exclude the pathogen from the niche occupied by E. coli. In contrast, E. coli invades the niche constructed by S. Typhimurium virulence factors and confers colonization resistance by competing for nitrate. Thus, nutrient niches are not defined solely by critical resources, but they can be further subdivided biogeographically within the host into distinct microhabitats, thereby generating new niche opportunities for distinct bacterial species.


Assuntos
Microbioma Gastrointestinal , Salmonella typhimurium , Escherichia coli , Humanos , Nitratos , Nutrientes
4.
PLoS Pathog ; 18(2): e1010333, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35196366

RESUMO

Protective immune responses to Chlamydia infection within the female reproductive tract (FRT) are incompletely understood. MHC class II-restricted CD4 Th1 responses are believed to be vital for bacterial clearance due to their capacity to secrete IFN-γ, but an essential requirement for T-bet-expressing Th1 cells has yet to be demonstrated in the mouse model of Chlamydia infection. Here, we investigated the role of T-bet and IFN-γ in primary clearance of Chlamydia after FRT infection. Surprisingly, IFN-γ producing CD4 T cells from the FRT expressed low levels of T-bet throughout infection, suggesting that classical T-bet-expressing Th1 cells are inefficiently generated and therefore unlikely to participate in bacteria clearance. Furthermore, mice deficient in T-bet expression or with a CD4-specific T-bet deficiency cleared FRT infection similarly to wild-type controls. T-bet-deficient mice displayed significant skewing of FRT CD4 T cells towards Th17 responses, demonstrating that compensatory effector pathways are generated in the absence of Th1 cells. In marked contrast, IFN-γ-, and IFN-γR-deficient mice were able to reduce FRT bacterial burdens, but suffered systemic bacterial dissemination and 100% mortality. Together, these data demonstrate that IFN-γ signaling is essential to protect mice from fatal systemic disease, but that classical T-bet-expressing Th1 cells are non-essential for primary clearance within the FRT. Exploring the protective contribution of Th1 cells versus other CD4 effector lineages could provide important information for the generation of new Chlamydia vaccines.


Assuntos
Infecções por Chlamydia , Chlamydia , Infecções do Sistema Genital , Animais , Linfócitos T CD4-Positivos , Infecções por Chlamydia/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/genética , Células Th1 , Células Th17
5.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001624

RESUMO

Anatomical positioning of memory lymphocytes within barrier tissues accelerates secondary immune responses and is thought to be essential for protection at mucosal surfaces. However, it remains unclear whether resident memory in the female reproductive tract (FRT) is required for Chlamydial immunity. Here, we describe efficient generation of tissue-resident memory CD4 T cells and memory lymphocyte clusters within the FRT after vaginal infection with Chlamydia Despite robust establishment of localized memory lymphocytes within the FRT, naïve mice surgically joined to immune mice, or mice with only circulating immunity following intranasal immunization, were fully capable of resisting Chlamydia infection via the vaginal route. Blocking the rapid mobilization of circulating memory CD4 T cells to the FRT inhibited this protective response. These data demonstrate that secondary protection in the FRT can occur in the complete absence of tissue-resident immune cells. The ability to confer robust protection to barrier tissues via circulating immune memory provides an unexpected opportunity for vaccine development against infections of the FRT.


Assuntos
Anticorpos Antibacterianos/biossíntese , Linfócitos T CD4-Positivos/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Genitália Feminina/imunologia , Imunização/métodos , Administração Intranasal , Administração Intravaginal , Animais , Antígenos de Bactérias/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/microbiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia muridarum/efeitos dos fármacos , Chlamydia muridarum/crescimento & desenvolvimento , Chlamydia muridarum/patogenicidade , Feminino , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/microbiologia , Imunidade nas Mucosas/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Camundongos , Parabiose/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA