Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Prev Vet Med ; 212: 105835, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642015

RESUMO

Zoonotic diseases have huge livestock and public health burden worldwide, including India. Prioritizing zoonotic diseases is one of the important tasks under 'One Health' as it facilitates effective policy making, proper allocation of resources and promotion of multisectoral collaboration. Although some efforts have been made to prioritizing zoonotic diseases at national level in India, it is important to identify priority diseases in regional settings due to wide variation in climate and demography of different states. Therefore, the present study aims to prioritize zoonotic diseases for the state of Haryana (India). One Health Zoonotic Disease Prioritization (OHZDP) tool was used in this study to prioritize zoonotic diseases. Based on literature review of the past 23 years (2000-2022) on prevalence, morbidity, and mortality of zoonotic diseases, twenty-three high-scoring zoonotic diseases in Haryana and neighboring states of India were initially shortlisted for prioritization. A three-day participatory workshop was conducted involving 17 experts representing the Health, Animal Husbandry and Wildlife departments of Haryana. The Analytical Hierarchy Process (AHP) was used to rank the criteria, which were used to score the selected diseases using the decision tree analysis. The participants selected the following 7 criteria along with their relative weights to score the diseases: (1) Severity of disease in humans, (2) Severity of disease in animals, (3) Presence of disease in the region, (4) Transmission and outbreak potential, (5) Socio-economic impact, (6) Availability of interventions, and (7) Existing inter-sectoral collaboration for surveillance and reporting. The top scoring eight diseases selected as priority zoonotic diseases for Haryana were rabies, Japanese encephalitis, bovine tuberculosis, leptospirosis, avian influenza (H5N1), brucellosis, glanders and Influenza A (H1N1). Sensitivity analysis did not reveal any significant variation in prioritization results by varying criteria weights. This is the first systemic attempt to prioritize zoonotic diseases in the state and this will help in formulating effective monitoring, prevention, and control strategies for zoonotic diseases in the regional settings.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Humanos , Animais , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Saúde Pública/métodos , Índia/epidemiologia
2.
Int J Biol Macromol ; 165(Pt A): 71-81, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987081

RESUMO

We aimed to provide a tissue repair material, which can be synthesized rapidly, using polymers mimicking the natural environment in the extra-cellular matrix and metals/minerals. The components should have the potential to be used in tissue repair and simultaneously, reducing the side-effects of the incorporated molecules. It is challenging to manage the dispersibility of ZnO NPs in common solutions like water. Here, we report a novel method for preparing highly dispersible suspensions of ZnO NPs. In contrast to those synthesized by conventional methods, microwave assisted method allowed synthesis of dispersible ZnO NPs and the incorporation of zinc/Iron oxides NPs within alginate and gum matrix (AG) in a short span of time providing high yield of the product. The nanoformulations were characterized for size, morphology, interaction of various chemicals used during their synthesis by transmissible electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and energy dispersive X ray Spectrum. It was also evaluated for cytotoxicity and their effect on equine fibroblast cells. Microwave-assisted fabrication of zinc/iron oxides nanoparticles provided flowerlike morphology with good dispersibility and high yield in a short span of time. Our results revealed that ZnO NPs were more cytotoxic than AG ZnO NPs and doped AG Fe3O4 doped ZnO NPs at higher concentrations. Further metal nanoparticles capped with alginate/acacia with size range less than 100 nm demonstrated high stability, good biocompatibility, re-epithelization and enhanced mineralization in horse fibroblast cells.


Assuntos
Compostos Férricos/química , Nanopartículas Metálicas/química , Nanocompostos/química , Óxido de Zinco/química , Animais , Compostos Férricos/farmacologia , Compostos Férricos/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Cavalos , Nanopartículas Metálicas/efeitos da radiação , Microscopia Eletrônica de Varredura , Micro-Ondas , Nanocompostos/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Zinco/farmacologia , Óxido de Zinco/efeitos da radiação
3.
Int J Biol Macromol ; 101: 967-972, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28373047

RESUMO

Zinc oxide nanoparticles are important nanomaterials currently under research due to their applicability in nanomedicine. Toxicity of ZnO NPs has been extensively studied and has been shown to affect various cell types and animal systems. In this study, we investigated hemolytic potential and oxidative stress inflicted by ZnO NPs and ZnO NPs-loaded-sodium alginate-gum acacia hydrogels on horse erythrocytes and African green monkey kidney (Vero) cells. Our study provides a better understanding of the hemolytic and oxidative effects of interaction of ZnO NPs and ZnO NPs released from polymeric hydrogels with the biological system. Remarkable aggregation of erythrocytes was noted in the higher concentration of ZnO NPs treated erythrocytes as compared to erythrocytes treated with ZnO NPs-loaded hydrogels. ZnO NPs-loaded hydrogels treated Vero cells significantly reduced oxidative stress as evidenced by less malondialdehyde production as compared to that of ZnO NPs treated cells. Normal horse erythrocytes when treated with ZnO NPs in in vitro condition undergo oxidative damage, and contribute in augmenting the toxicity. We demonstrated that polymeric ZnO NPs reduced the undesirable effects provoked by ZnO NPs on mammalian cells.


Assuntos
Alginatos/química , Goma Arábica/química , Hemólise/efeitos dos fármacos , Hidrogéis/química , Estresse Oxidativo/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Animais , Eritrócitos/efeitos dos fármacos , Eritrócitos/imunologia , Eritrócitos/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Cavalos , Nanopartículas/química , Nanopartículas/toxicidade , Relação Estrutura-Atividade
4.
Int J Biol Macromol ; 88: 146-55, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27000439

RESUMO

We synthesized quinapyramine sulfate loaded-sodium alginate nanoparticles (QS-NPs) to reduce undesirable toxic effects of QS against the parasite Trypanosoma evansi, a causative agent of trypanosomosis. To determine the safety of the formulated nanoparticles, biocompatibility of QS-NPs was determined using Vero, Hela cell lines and horse erythrocytes in a dose-dependent manner. Our experiments unveiled a concentration-dependent safety/cytotoxicity (metabolic activity), genotoxicity (DNA damage, chromosomal aberrations), production of reactive oxygen species and hemolysis in QS-NPs treated cells. Annexin-V propidium iodide (PI) staining showed no massive apoptosis or necrosis. However, at very high doses (more than 300 times than the effective doses), we observed more toxicity in QS-NPs treated cells as compared to QS treated cells. QS-NPs were safe at effective trypanocidal doses and even at doses several times higher than the effective dose.


Assuntos
Alginatos/química , Portadores de Fármacos , Nanopartículas/toxicidade , Compostos de Quinolínio/toxicidade , Tripanossomicidas/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Aberrações Cromossômicas/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Composição de Medicamentos , Eritrócitos/efeitos dos fármacos , Ácido Glucurônico/química , Células HeLa , Hemólise/efeitos dos fármacos , Ácidos Hexurônicos/química , Cavalos , Humanos , Nanopartículas/química , Nanopartículas/ultraestrutura , Compostos de Quinolínio/química , Espécies Reativas de Oxigênio/metabolismo , Tripanossomicidas/química , Células Vero
5.
Genome Announc ; 3(5)2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26494667

RESUMO

Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum causes fowl typhoid (FT), which results in huge economic losses to poultry farmers in India. We report the draft genome sequence of Salmonella biovar Gallinarum strain VTCCBAA614, isolated from a chicken in an FT affected broiler flock.

6.
Virusdisease ; 26(3): 151-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26396982

RESUMO

Camelpox virus (CMLV), a close variant of variola virus (VARV) infects camels worldwide. The zoonotic infections reported from India signify the need to study the host-range genes-responsible for host tropism. We report sequence and phylogenetic analysis of five host-range genes: cytokine response modifier B (crmB), chemokine binding protein (ckbp), viral schlafen-like (v-slfn), myxomavirus T4-like (M-T4-like) and b5r of CMLVs isolated from outbreaks in India. Comparative analysis revealed that these genes are conserved among CMLVs and shared 94.5-100 % identity at both nucleotide (nt) and amino acid (aa) levels. All genes showed identity (59.3-98.4 %) with cowpox virus (CPXV) while three genes-crmB, ckbp and b5r showed similarity (92-96.5 %) with VARVs at both nt and aa levels. Interestingly, three consecutive serine residue insertions were observed in CKBP protein of CMLV-Delhi09 isolate which was similar to CPXV-BR and VACVs, besides five point mutations (K53Q, N67I, F84S, A127T and E182G) were also similar to zoonotic OPXVs. Further, few inconsistent point mutation(s) were also observed in other gene(s) among Indian CMLVs. These indicate that different strains of CMLVs are circulating in India and these mutations could play an important role in adaptation of CMLVs in humans. The phylogeny revealed clustering of all CMLVs together except CMLV-Delhi09 which grouped separately due to the presence of specific point mutations. However, the topology of the concatenated phylogeny showed close evolutionary relationship of CMLV with VARV and TATV followed by CPXV-RatGer09/1 from Germany. The availability of this genetic information will be useful in unveiling new strategies to control emerging zoonotic poxvirus infections.

7.
Virus Genes ; 51(2): 315-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26174698

RESUMO

Phage therapy has been previously tried for treatment of diarrhoea in calves, pigs and lambs but those trials were conducted without any detailed information of used phages. Here, we report isolation of a broad-spectrum phage which showed bactericidal activity against 47.3 % of calf diarrhoeal isolates of Escherichia coli, in vitro. The isolated phage resembled the characteristics of Myoviridae family and showed ~97 % similarity with earlier reported bacteriophages of sub family-Tevenvirinae, genus-T4-like virus, based on nucleotide sequence of major head protein-gp23 gene. The phage exhibits the potential to be used as drug substitute tool against E. coli causing diarrhoea in cattle in farm environments.


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Especificidade de Hospedeiro , Animais , Bacteriófagos/ultraestrutura , Terapia Biológica/métodos , Bovinos , Doenças dos Bovinos/prevenção & controle , DNA Viral/química , DNA Viral/genética , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Myoviridae/ultraestrutura , Análise de Sequência de DNA , Homologia de Sequência , Proteínas não Estruturais Virais/genética , Vírion/ultraestrutura
8.
Virus Genes ; 45(3): 488-98, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22872567

RESUMO

Buffalopox virus (BPXV), a close variant of vaccinia virus (VACV) has emerged as a zoonotic pathogen. The host tropism of poxviruses is governed by host-range genes. Among the host-range genes: E3L, K3L, and C7L are essential for virus replication by preventing interferon resistance, whereas B5R is essential for spread of the virus and evasion from the host's immune response as in VACV. We report sequence analysis of host-range genes: E3L, K3L, C7L, and membrane protein gene (B5R) of BPXVs from buffalo, cattle, and human from recent outbreaks in India-their phylogenetic relationship with reference strain (BP4) and other Orthopoxviruses. BPXVs revealed a sequence homology with VACVs including zoonotic Brazilian VACV-like viruses. The aa sequences of E3L and K3L genes were 100 % similar in buffalo, cattle, and human isolates. However, four significant point mutations (I11K; N12K and S36F in C7L gene and D249G in B5R gene) were observed specific to buffalo isolate only. This signifies that different strains of BPXV were circulated during the outbreak. The mutations in C7L and B5R could play an important role in adaptation of BPXV in human and cattle which needs further functional studies. The strain of BPXV isolated from buffalo may not be adopted in human and cow. Various point mutations were observed in the host-range genes of reference strain (BPXV-BP4) which may be due to several passages of virus in cell culture. The phylogeny constructed based on concatenated gene sequences revealed that BPXVs are not as closely related to vaccine strain (Lister and Lister-derived strain-LC16m8), as hypothesized earlier, rather they are more closely related to reference strain (BPXV-BP4) and other vaccinia and vaccinia-like viruses such as Passatempo and Aracatuba viruses. The availability of information regarding host tropism determinants would allow us to understand molecular mechanism of species tropism of poxviruses which would be useful in unveiling new strategies to control zoonotic poxviral infections.


Assuntos
Especificidade de Hospedeiro , Filogenia , Vaccinia virus/isolamento & purificação , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Búfalos/virologia , Bovinos/virologia , Chlorocebus aethiops , DNA Viral/genética , Surtos de Doenças/veterinária , Genes Virais , Humanos , Índia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação Puntual , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de Proteína , Homologia de Sequência do Ácido Nucleico , Inoculações Seriadas , Vacínia/veterinária , Vacínia/virologia , Vaccinia virus/genética , Vaccinia virus/fisiologia , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
9.
Vet Microbiol ; 152(1-2): 29-38, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21571451

RESUMO

This study reports the first conclusive evidence of zoonotic camelpox virus (CMLV) infection in humans associated with outbreaks in dromedarian camels (Camelus dromedaries) in northwest region of India during 2009. CMLV infection is usually restricted to camels and causes localised skin lesions but occasionally leads to generalised form of disease. However, the present outbreak involved camel handlers and attendants with clinical manifestations such as papules, vesicles, ulceration and finally scabs over fingers and hands. In camels, the pock-like lesions were distributed over the hairless parts of the body. On the basis of clinical and epidemiological features coupled with serological tests and molecular characterization of the causative agent, CMLV zoonosis was confirmed in three human cases. Clinical samples such as skin scabs/swabs and blood collected from affected animals and humans were analysed initially, for the presence of CMLV-specific antigen and antibodies by counter immunoelectrophoresis (CIE); serum neutralization test (SNT); plaque-reduction neutralization test (PRNT) and indirect immunoperoxidase test which was later confirmed by amplification of CMLV-specific ankyrin repeat protein (C18L) gene. Virus isolation was successful only from samples collected from camels. Further, sequence analyses based on three full-length envelope protein genes (A27L, H3L and D8L) revealed 95.2-99.8% and 93.1-99.3% homology with other Orthopoxviruses at nucleotide and amino acid levels, respectively. Phylogram of the three genes revealed a close relationship of CMLV with Variola virus (VARV). Considering the emerging and re-emerging nature of the virus, its genetic relatedness to VARV, zoonotic potential and productivity losses in camels; the control measures are imperative in curtailing economic and public health impact of the disease. This is the first instance of laboratory confirmed camelpox zoonosis in India.


Assuntos
Camelus/virologia , Surtos de Doenças , Orthopoxvirus/isolamento & purificação , Infecções por Poxviridae/epidemiologia , Zoonoses/epidemiologia , Adulto , Animais , Anticorpos Antivirais/sangue , Chlorocebus aethiops , DNA Viral/genética , Humanos , Índia/epidemiologia , Masculino , Testes de Neutralização , Orthopoxvirus/genética , Orthopoxvirus/imunologia , Filogenia , Infecções por Poxviridae/virologia , Saúde Pública , Análise de Sequência de DNA , Células Vero , Proteínas Virais/genética , Adulto Jovem
10.
Transbound Emerg Dis ; 57(5): 352-64, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20642492

RESUMO

Peste des petits ruminants (PPR) is an acute, highly contagious, notifiable and economically important transboundary viral disease of sheep and goats. In this study, sequence and phylogenetic analyses of structural protein genes, namely the nucleocapsid (N), the matrix (M), the fusion (F) and the haemagglutinin (H) coding sequences of virulent and vaccine strains of PPR virus (PPRV), were undertaken to determine the genetic variations between field isolates and vaccine strains. The open reading frame (ORF) of these genes of the isolates/strains was amplified by RT-PCR, cloned and sequenced. The ORF of N, M, F and H genes was 1578, 1008, 1641 and 1830 nucleotides (nt) in length and encodes polypeptides of 525, 335, 546 and 609 amino acids (aa), respectively, as reported earlier. Comparative sequence analyses of these four genes of isolates/strains were carried out with published sequences. It revealed an identity of 97.7-100% and 97.7-99.8% among the Asian lineage IV and 89.6-98.7% and 89.8-98.9% with other lineages of PPRV at nt and aa levels, respectively. The phylogenetic analyses of these isolates based on the aa sequences showed that all the viruses belonged to lineage IV along with other Asian isolates. This is in agreement with earlier observations that only PPRV lineage IV is in circulation in India since the disease was first reported. Further, sequence analysis of the thermostable/thermo-adapted vaccine strains showed no significant changes in the functional or structural surface protein-coding gene sequences. It is important to monitor the circulation of the PPRV in susceptible animals by H gene-based sequence comparisons in addition to the F gene- and N gene-based approaches to identify the distribution and spread of virus in the regular outbreaks that occur in endemic countries like India.


Assuntos
Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Animais , Índia/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia
11.
J Virol Methods ; 162(1-2): 56-63, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19646481

RESUMO

In this study, both partial and full-length nucleocapsid (N) gene of Peste des petits ruminants virus (PPRV) were cloned into pET33b vector and expressed in Escherichia coli (BL21) with the objective of replacing live PPRV antigen with recombinant protein in ELISA. The expressed proteins were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blot by using a PPRV N protein specific monoclonal antibody. The expressed histidine-tagged fusion proteins were purified using affinity Ni-NTA column and were assessed for their conformation in terms of reactivity by ELISA. The immunogenicity of recombinant proteins was also assessed in rabbits and anti-N antibody response against PPRV was observed in all the immunized rabbits, when tested by competitive and indirect ELISAs. In sandwich ELISA, a mean OD(492 nm) of 1.4 and 0.90 was obtained for crude lysate having expressed the N protein and the PPRV antigen, respectively. Further, the N protein was tested as a coating antigen in competitive ELISA instead of PPRV antigen for serological diagnosis of PPR infection. This indicates the diagnostic potential of the PPRV recombinant N proteins, which are safe and better alternatives to live PPRV antigen in ELISA for clinical or sero-surveillance of PPR in enzootic or non-enzootic countries.


Assuntos
Escherichia coli/metabolismo , Proteínas do Nucleocapsídeo , Peste dos Pequenos Ruminantes/diagnóstico , Vírus da Peste dos Pequenos Ruminantes/metabolismo , Proteínas Recombinantes , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/metabolismo , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA