Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Cardiol ; 407: 132061, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641263

RESUMO

BACKGROUND AND AIMS: Intracoronary pressure gradients and translesional flow patterns have been correlated with coronary plaque progression and lesion destabilization. In this study, we aimed to determine the relationship between endothelial shear stress and plaque progression and to evaluate the effect of shear forces on coronary plaque features. METHODS: A systematic review was conducted in medical on-line databases. Selected were studies including human participants who underwent coronary anatomy assessment with computational fluid dynamics (CFD)-based wall shear stress (WSS) calculation at baseline with anatomical evaluation at follow-up. A total of six studies were included for data extraction and analysis. RESULTS: The meta-analysis encompassed 31'385 arterial segments from 136 patients. Lower translesional WSS values were significantly associated with a reduction in lumen area (mean difference -0.88, 95% CI -1.13 to -0.62), an increase in plaque burden (mean difference 4.32, 95% CI 1.65 to 6.99), and an increase in necrotic core area (mean difference 0.02, 95% CI 0.02 to 0.03) at follow-up imaging. Elevated WSS values were associated with an increase in lumen area (mean difference 0.78, 95% CI 0.34 to 1.21) and a reduction in both fibrofatty (mean difference -0.02, 95% CI -0.03 to -0.01) and fibrous plaque areas (mean difference -0.03, 95% CI -0.03 to -0.03). CONCLUSION: This meta-analysis shows that WSS parameters were related to vulnerable plaque features at follow-up. These results emphasize the impact of endothelial shear forces on coronary plaque growth and composition. Future studies are warranted to evaluate the role of WSS in guiding clinical decision-making.


Assuntos
Doença da Artéria Coronariana , Progressão da Doença , Endotélio Vascular , Placa Aterosclerótica , Estresse Mecânico , Humanos , Placa Aterosclerótica/fisiopatologia , Placa Aterosclerótica/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/diagnóstico por imagem , Endotélio Vascular/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia
2.
Int J Cardiol ; 399: 131668, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141723

RESUMO

BACKGROUND AND AIMS: Coronary hemodynamics impact coronary plaque progression and destabilization. The aim of the present study was to establish the association between focal vs. diffuse intracoronary pressure gradients and wall shear stress (WSS) patterns with atherosclerotic plaque composition. METHODS: Prospective, international, single-arm study of patients with chronic coronary syndromes and hemodynamic significant lesions (fractional flow reserve [FFR] ≤ 0.80). Motorized FFR pullback pressure gradient (PPG), optical coherence tomography (OCT), and time-average WSS (TAWSS) and topological shear variation index (TSVI) derived from three-dimensional angiography were obtained. RESULTS: One hundred five vessels (median FFR 0.70 [Interquartile range (IQR) 0.56-0.77]) had combined PPG and WSS analyses. TSVI was correlated with PPG (r = 0.47, [95% Confidence Interval (95% CI) 0.30-0.65], p < 0.001). Vessels with a focal CAD (PPG above the median value of 0.67) had significantly higher TAWSS (14.8 [IQR 8.6-24.3] vs. 7.03 [4.8-11.7] Pa, p < 0.001) and TSVI (163.9 [117.6-249.2] vs. 76.8 [23.1-140.9] m-1, p < 0.001). In the 51 vessels with baseline OCT, TSVI was associated with plaque rupture (OR 1.01 [1.00-1.02], p = 0.024), PPG with the extension of lipids (OR 7.78 [6.19-9.77], p = 0.003), with the presence of thin-cap fibroatheroma (OR 2.85 [1.11-7.83], p = 0.024) and plaque rupture (OR 4.94 [1.82 to 13.47], p = 0.002). CONCLUSIONS: Focal and diffuse coronary artery disease, defined using coronary physiology, are associated with differential WSS profiles. Pullback pressure gradients and WSS profiles are associated with atherosclerotic plaque phenotypes. Focal disease (as identified by high PPG) and high TSVI are associated with high-risk plaque features. CLINICAL TRIAL REGISTRATION: https://clinicaltrials,gov/ct2/show/NCT03782688.


Assuntos
Doença da Artéria Coronariana , Reserva Fracionada de Fluxo Miocárdico , Placa Aterosclerótica , Humanos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Hemodinâmica , Fenótipo , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Valor Preditivo dos Testes , Estudos Prospectivos
4.
IEEE Trans Biomed Eng ; 70(3): 1095-1104, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36155431

RESUMO

OBJECTIVE: The need for distilling the hemodynamic complexity of aortic flows into clinically relevant quantities resulted in a loss of the information hidden in 4D aortic fluid structures. To reduce information loss, this study proposes a network-based approach to identify and characterize in vivo the large-scale coherent motion of blood in the healthy human aorta. METHODS: The quantitative paradigm of the aortic flow as a "social network" was applied on 4D flow MRI acquisitions performed on forty-one healthy volunteers. Correlations between the aortic blood flow rate waveform at the proximal ascending aorta (AAo), assumed as one of the drivers of aortic hemodynamics, and the waveforms of the axial velocity in the whole aorta were used to build "one-to-all" networks. The impact of the driving flow rate waveform and of aortic geometric attributes on the transport of large-scale coherent fluid structures was investigated. RESULTS: The anatomical length of persistence of large-scale coherent motion was the 29.6% of the healthy thoracic aorta length (median value, IQR 23.1%-33.9%). Such length is significantly influenced by the average and peak-to-peak AAo blood flow rate values, suggesting a remarkable inertial effect of the AAo flow rate on the transport of large-scale fluid structures in the distal aorta. Aortic geometric attributes such as curvature, torsion and arch shape did not influence the anatomical length of persistence. CONCLUSION: The proposed in vivo approach allowed to quantitatively characterize the transport of large-scale fluid structures in the healthy aorta, strengthening the definition of coherent hemodynamic structures and identifying flow inertia rather than geometry as one of its main determinants. SIGNIFICANCE: The findings on healthy aortas may be used as reference values to investigate the impact of aortic disease or implanted devices in disrupting/restoring the physiological spatiotemporal coherence of large-scale aortic flow.


Assuntos
Aorta , Valva Aórtica , Humanos , Velocidade do Fluxo Sanguíneo , Aorta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Aorta Torácica
5.
Atherosclerosis ; 342: 28-35, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815069

RESUMO

BACKGROUND AND AIMS: Wall shear stress (WSS) has been associated with atherogenesis and plaque progression. The present study assessed the value of WSS analysis derived from conventional coronary angiography to detect lesions culprit for future myocardial infarction (MI). METHODS AND RESULTS: Three-dimensional quantitative coronary angiography (3DQCA), was used to calculate WSS and pressure drop in 80 patients. WSS descriptors were compared between 80 lesions culprit of future MI and 108 non-culprit lesions (controls). Endothelium-blood flow interaction was assessed by computational fluid dynamics (10.8 ± 1.41 min per vessel). Median time between baseline angiography and MI was 25.9 (21.9-29.8) months. Mean patient age was 70.3 ± 12.7. Clinical presentation was STEMI in 35% and NSTEMI in 65%. Culprit lesions showed higher percent area stenosis (%AS), translesional vFFR difference (ΔvFFR), time-averaged WSS (TAWSS) and topological shear variation index (TSVI) compared to non-culprit lesions (p < 0.05 for all). TSVI was superior to TAWSS in predicting MI (AUC-TSVI = 0.77, 95%CI 0.71-0.84 vs. AUC-TAWSS = 0.61, 95%CI 0.53-0.69, p < 0.001). The addition of TSVI increased predictive and reclassification abilities compared to a model based on %AS and ΔvFFR (NRI = 1.04, p < 0.001, IDI = 0.22, p < 0.001). CONCLUSIONS: A 3DQCA-based WSS analysis was feasible and can identify lesions culprit for future MI. The combination of area stenoses, pressure gradients and WSS predicted the occurrence of MI. TSVI, a novel WSS descriptor, showed strong predictive capacity to detect lesions prone to cause MI.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Endotélio , Humanos , Modelos Cardiovasculares , Infarto do Miocárdio/diagnóstico por imagem , Estresse Mecânico
6.
J Biomech Eng ; 140(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029263

RESUMO

Endovascular aneurysm repair (EVAR) has disseminated rapidly as an alternative to open surgical repair for the treatment of abdominal aortic aneurysms (AAAs), because of its reduced invasiveness, low mortality, and morbidity rate. The effectiveness of the endovascular devices used in EVAR is always at question as postoperative adverse events can lead to re-intervention or to a possible fatal scenario for the circulatory system. Motivated by the assessment of the risks related to thrombus formation, here the impact of two different commercial endovascular grafts on local hemodynamics is explored through 20 image-based computational hemodynamic models of EVAR-treated patients (N = 10 per each endograft model). Hemodynamic features, susceptible to promote thrombus formation, such as flow separation and recirculation, are quantitatively assessed and compared with the local hemodynamics established in image-based infrarenal abdominal aortic models of healthy subjects (N = 10). Moreover, the durability of endovascular devices is investigated analyzing the displacement forces (DFs) acting on them. The hemodynamic analysis is complemented by a geometrical characterization of the EVAR-induced reshaping of the infrarenal abdominal aortic vascular region. The findings of this study indicate that (1) the clinically observed propensity to thrombus formation in devices used in EVAR strategies can be explained in terms of local hemodynamics by means of image-based computational hemodynamics approach; (2) reportedly prothrombotic hemodynamic structures are strongly associated with the geometry of the aortoiliac tract postoperatively; and (3) DFs are associated with cross-sectional area of the aortoiliac tract postoperatively. In perspective, our study suggests that future clinical followup studies could include a geometric analysis of the region of the implant, monitoring shape variations that can lead to hemodynamic disturbances of clinical significance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA