Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Am Heart Assoc ; 13(9): e032172, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700022

RESUMO

BACKGROUND: The purpose of this study was to investigate a therapeutic approach targeting the inflammatory response and consequent remodeling from ischemic myocardial injury. METHODS AND RESULTS: Coronary thrombus aspirates were collected from patients at the time of ST-segment-elevation myocardial infarction and subjected to array-based proteome analysis. Clinically indistinguishable at myocardial infarction (MI), patients were stratified into vulnerable and resilient on the basis of 1-year left ventricular ejection fraction and death. Network analysis from coronary aspirates revealed prioritization of tumor necrosis factor-α signaling in patients with worse clinical outcomes. Infliximab, a tumor necrosis factor-α inhibitor, was infused intravenously at reperfusion in a porcine MI model to assess whether infliximab-mediated immune modulation impacts post-MI injury. At 3 days after MI (n=7), infliximab infusion increased proregenerative M2 macrophages in the myocardial border zone as quantified by immunofluorescence (24.1%±23.3% in infliximab versus 9.29%±8.7% in sham; P<0.01). Concomitantly, immunoassays of coronary sinus samples quantified lower troponin I levels (41.72±7.34 pg/mL versus 58.11±10.75 pg/mL; P<0.05) and secreted protein analysis revealed upregulation of injury-modifying interleukin-2, -4, -10, -12, and -18 cytokines in the infliximab-treated cohort. At 4 weeks (n=12), infliximab treatment resulted in significant protective influence, improving left ventricular ejection fraction (53.9%±5.4% versus 36.2%±5.3%; P<0.001) and reducing scar size (8.31%±10.9% versus 17.41%±12.5%; P<0.05). CONCLUSIONS: Profiling of coronary thrombus aspirates in patients with ST-segment-elevation MI revealed highest association for tumor necrosis factor-α in injury risk. Infliximab-mediated immune modulation offers an actionable pathway to alter MI-induced inflammatory response, preserving contractility and limiting adverse structural remodeling.


Assuntos
Modelos Animais de Doenças , Infliximab , Remodelação Ventricular , Infliximab/uso terapêutico , Infliximab/farmacologia , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Remodelação Ventricular/efeitos dos fármacos , Feminino , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Infarto do Miocárdio com Supradesnível do Segmento ST/imunologia , Função Ventricular Esquerda/efeitos dos fármacos , Suínos , Idoso , Fator de Necrose Tumoral alfa/metabolismo , Volume Sistólico/efeitos dos fármacos , Trombose Coronária/prevenção & controle , Trombose Coronária/tratamento farmacológico , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia , Troponina I/sangue , Troponina I/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473889

RESUMO

The purpose of this study was to evaluate the biodistribution of a platelet-derived exosome product (PEP), previously shown to promote regeneration in the setting of wound healing, in a porcine model delivered through various approaches. Exosomes were labeled with DiR far-red lipophilic dye to track and quantify exosomes in tissue, following delivery via intravenous, pulmonary artery balloon catheter, or nebulization in sus scrofa domestic pigs. Following euthanasia, far-red dye was detected by Xenogen IVUS imaging, while exosomal protein CD63 was detected by Western blot and immunohistochemistry. Nebulization and intravenous delivery both resulted in global uptake of exosomes within the lung parenchyma. However, nebulization resulted in the greatest degree of exosome uptake. Pulmonary artery balloon catheter-guided delivery provided the further ability to localize pulmonary delivery. No off-target absorption was noted in the heart, spleen, or kidney. However, the liver demonstrated uptake primarily in nebulization-treated animals. Nebulization also resulted in uptake in the trachea, without significant absorption in the esophagus. Overall, this study demonstrated the feasibility of pulmonary delivery of exosomes using nebulization or intravenous infusion to accomplish global delivery or pulmonary artery balloon catheter-guided delivery for localized delivery.


Assuntos
Exossomos , Animais , Suínos , Exossomos/metabolismo , Distribuição Tecidual , Cicatrização , Transporte Biológico , Pulmão
3.
Transl Res ; 269: 76-93, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38325750

RESUMO

Chronic obstructive pulmonary disease (COPD) is a prevalent lung disease usually resulting from cigarette smoking (CS). Cigarette smoking induces oxidative stress, which causes inflammation and alveolar epithelial cell apoptosis and represents a compelling therapeutic target for COPD. Purified human platelet-derived exosome product (PEP) is endowed with antioxidant enzymes and immunomodulatory molecules that mediate tissue repair. In this study, a murine model of CS-induced emphysema was used to determine whether nebulized PEP can influence the development of CS-induced emphysema through the mitigation of oxidative stress and inflammation in the lung. Nebulization of PEP effectively delivered the PEP vesicles into the alveolar region, with evidence of their uptake by type I and type II alveolar epithelial cells and macrophages. Lung function testing and morphometric assessment showed a significant attenuation of CS-induced emphysema in mice treated with nebulized PEP thrice weekly for 4 weeks. Whole lung immuno-oncology RNA sequencing analysis revealed that PEP suppressed several CS-induced cell injuries and inflammatory pathways. Validation of inflammatory cytokines and apoptotic protein expression on the lung tissue revealed that mice treated with PEP had significantly lower levels of S100A8/A9 expressing macrophages, higher levels of CD4+/FOXP3+ Treg cells, and reduced NF-κB activation, inflammatory cytokine production, and apoptotic proteins expression. Further validation using in vitro cell culture showed that pretreatment of alveolar epithelial cells with PEP significantly attenuated CS extract-induced apoptotic cell death. These data show that nebulization of exosomes like PEP can effectively deliver exosome cargo into the lung, mitigate CS-induced emphysema in mice, and suppress oxidative lung injury, inflammation, and apoptotic alveolar epithelial cell death.


Assuntos
Plaquetas , Fumar Cigarros , Vesículas Extracelulares , Camundongos Endogâmicos C57BL , Enfisema Pulmonar , Animais , Vesículas Extracelulares/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/etiologia , Camundongos , Fumar Cigarros/efeitos adversos , Plaquetas/metabolismo , Humanos , Nebulizadores e Vaporizadores , Estresse Oxidativo/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos
4.
ASAIO J ; 70(5): 396-403, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181416

RESUMO

The purpose of this study was to evaluate left ventricular (LV) unloading strategies in patients supported with peripheral venoarterial extracorporeal membrane oxygenation (VA-ECMO). A retrospective review was conducted of all consecutive patients requiring VA-ECMO support for any indication, who underwent novel LV unloading strategies with either direct left atrial venoarterial (LAVA) cannulation or pulmonary artery venoarterial (PAVA) venting, in comparison to Impella and intra-aortic balloon pump (IABP). The primary outcome was successful bridge to transplant, LV assist device, or myocardial recovery. Forty-six patients (63% male, mean age 52.8 ± 17.6 years) were included. Fourteen patients (30%) underwent novel unloading with either LAVA or PAVA, 11 patients (24%) underwent IABP placement, and 21 patients (46%) underwent Impella insertion. In the novel LV unloading cohort, 10 patients (71%) survived to hospital discharge. Four patients (29%) were weaned from ECMO and eight patients (57%) underwent cardiac transplantation. Although a trend favoring cannula-based unloading for the primary outcome was noted, the cohort was too small for statistical significance (79% LAVA/PAVA, 57% Impella, 45% IABP; p = 0.21). However, probability of survival was greater in the LAVA/PAVA cohort compared to Impella and IABP ( p < 0.05). Thus, we demonstrate the efficacy of LA and PA cannulation as an alternative LV unloading strategy for patients supported with peripheral VA-ECMO.


Assuntos
Oxigenação por Membrana Extracorpórea , Coração Auxiliar , Balão Intra-Aórtico , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Adulto , Idoso , Balão Intra-Aórtico/métodos , Resultado do Tratamento , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/cirurgia
5.
Mayo Clin Proc ; 98(4): 626-630, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37019516

RESUMO

Ebstein anomaly is a rare congenital heart defect occurring in 0.0005% of the population because of mispositioning and malformation of the tricuspid valve. Here, we present the first description and associated imaging of percutaneous mechanical circulatory support in the setting of cardiogenic shock secondary to Ebstein anomaly.


Assuntos
Anomalia de Ebstein , Cardiopatias Congênitas , Insuficiência da Valva Tricúspide , Humanos , Valva Tricúspide , Insuficiência da Valva Tricúspide/etiologia , Choque Cardiogênico
8.
Regen Med ; 17(11): 805-817, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36193669

RESUMO

Aim: To investigate the regenerative effects of a platelet-derived purified exosome product (PEP) on human endometrial cells. Materials & methods: Endometrial adenocarcinoma cells (HEC-1A), endometrial stromal cells (T HESC) and menstrual blood-derived stem cells (MenSC) were assessed for exosome absorption and subsequent changes in cell proliferation and wound healing properties over 48 h. Results: Cell proliferation increased in PEP treated T HESC (p < 0.0001) and MenSC (p < 0.001) after 6 h and in HEC-1A (p < 0.01) after 12 h. PEP improved wound healing after 6 h in HEC-1A (p < 0.01) and MenSC (p < 0.0001) and in T HESC between 24 and 36 h (p < 0.05). Conclusion: PEP was absorbed by three different endometrial cell types. PEP treatment increased cell proliferation and wound healing capacity.


The uterus has a remarkable ability to heal itself. Every month the inside lining of the uterus grows in preparation for pregnancy and sheds if no pregnancy occurs. Unfortunately, this cycle of growth, shedding and repair can be injured and lead to menstrual changes, pain or even infertility. In this study, we looked how special cell messengers ­ called exosomes ­ could help uterine cells. Exosomes are special messengers that contain substances to help the body heal and regenerate injured cells and tissues. We obtained exosomes created from human transfusion-grade platelets. We studied the exosomes' effects in three different cell types that all are important inside the uterine lining. Specifically, we studied the ability of the exosomes to help cells proliferate and migrate into a wound. In this study, exosomes were recognized by the human endometrial cells and were absorbed. Once they were inside the cells, they increased cell proliferation as well as the ability of the cells to heal a scratch wound. Furthermore, the more exosomes we presented to the cells, the more the cells were able to proliferate and move into a wound for healing. These findings lay the groundwork for future studies in animal models of uterine injury.


Assuntos
Exossomos , Proliferação de Células , Endométrio , Feminino , Humanos , Células Estromais/metabolismo , Cicatrização
9.
NPJ Regen Med ; 7(1): 58, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175423

RESUMO

Urinary incontinence afflicts up to 40% of adult women in the United States. Stress urinary incontinence (SUI) accounts for approximately one-third of these cases, precipitating ~200,000 surgical procedures annually. Continence is maintained through the interplay of sub-urethral support and urethral sphincter coaptation, particularly during activities that increase intra-abdominal pressure. Currently, surgical correction of SUI focuses on the re-establishment of sub-urethral support. However, mesh-based repairs are associated with foreign body reactions and poor localized tissue healing, which leads to mesh exposure, prompting the pursuit of technologies that restore external urethral sphincter function and limit surgical risk. The present work utilizes a human platelet-derived CD41a and CD9 expressing extracellular vesicle product (PEP) enriched for NF-κB and PD-L1 and derived to ensure the preservation of lipid bilayer for enhanced stability and compatibility with hydrogel-based sustained delivery approaches. In vitro, the application of PEP to skeletal muscle satellite cells in vitro drove proliferation and differentiation in an NF-κB-dependent fashion, with full inhibition of impact on exposure to resveratrol. PEP biopotentiation of collagen-1 and fibrin glue hydrogel achieved sustained exosome release at 37 °C, creating an ultrastructural "bead on a string" pattern on scanning electron microscopy. Initial testing in a rodent model of latissimus dorsi injury documented activation of skeletal muscle proliferation of healing. In a porcine model of stress urinary incontinence, delivery of PEP-biopotentiated collagen-1 induced functional restoration of the external urethral sphincter. The histological evaluation found that sustained PEP release was associated with new skeletal muscle formation and polarization of local macrophages towards the regenerative M2 phenotype. The results provided herein serve as the first description of PEP-based biopotentiation of hydrogels implemented to restore skeletal muscle function and may serve as a promising approach for the nonsurgical management of SUI.

10.
Hum Mol Genet ; 28(14): 2365-2377, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31267131

RESUMO

MEGF10 myopathy is a rare inherited muscle disease that is named after the causative gene, MEGF10. The classic phenotype, early onset myopathy, areflexia, respiratory distress and dysphagia, is severe and immediately life-threatening. There are no disease-modifying therapies. We performed a small molecule screen and follow-up studies to seek a novel therapy. A primary in vitro drug screen assessed cellular proliferation patterns in Megf10-deficient myoblasts. Secondary evaluations were performed on primary screen hits using myoblasts derived from Megf10-/- mice, induced pluripotent stem cell-derived myoblasts from MEGF10 myopathy patients, mutant Drosophila that are deficient in the homologue of MEGF10 (Drpr) and megf10 mutant zebrafish. The screen yielded two promising candidates that are both selective serotonin reuptake inhibitors (SSRIs), sertraline and escitalopram. In depth follow-up analyses demonstrated that sertraline was highly effective in alleviating abnormalities across multiple models of the disease including mouse myoblast, human myoblast, Drosophila and zebrafish models. Sertraline also restored deficiencies of Notch1 in disease models. We conclude that SSRIs show promise as potential therapeutic compounds for MEGF10 myopathy, especially sertraline. The mechanism of action may involve the Notch pathway.


Assuntos
Proteínas de Membrana/genética , Doenças Musculares/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Sertralina/uso terapêutico , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Citalopram/farmacologia , Citalopram/uso terapêutico , Drosophila/efeitos dos fármacos , Drosophila/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Mutação , Mioblastos/metabolismo , Receptor Notch1/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Hum Gene Ther ; 30(2): 139-154, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30070157

RESUMO

Barth syndrome (BTHS) is a rare mitochondrial disease that affects heart and skeletal muscle and has no curative treatment. It is caused by recessive mutations in the X-linked gene TAZ, which encodes tafazzin. To develop a clinically relevant gene therapy to restore tafazzin function and treat BTHS, three different adeno-associated virus serotype 9 vectors were tested and compared to identify the optimal promoter-cytomegalovirus (CMV), desmin (Des), or a native tafazzin promoter (Taz)-for TAZ expression following intravenous administration of 1 × 1013 vector genomes/kilogram to a mouse model of BTHS as either neonates (1-2 days of age) or adults (3 months of age). At 5 months of age, evaluations of biodistribution and TAZ expression levels, mouse activity assessments, fatigue in response to exercise, muscle strength, cardiac function, mitochondrial structure, oxygen consumption, and electron transport chain complex activity assays were performed to measure the extent of improvement in treated mice. Each promoter was scored for significant improvement over untreated control mice and significant improvement compared with the other two promoters for every measurement and within each age of administration. All three of the promoters resulted in significant improvements in a majority of the assessments compared with untreated BTHS controls. When scored for overall effectiveness as a gene therapy, the Des promoter was found to provide improvement in the most assessments, followed by the CMV promoter, and finally Taz regardless of injection age. This study provides substantial support for translation of an adeno-associated virus serotype 9-mediated TAZ gene replacement strategy using a Des promoter for human BTHS patients in the clinic.


Assuntos
Síndrome de Barth , Dependovirus , Terapia Genética , Vetores Genéticos , Fatores de Transcrição , Transdução Genética , Aciltransferases , Animais , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Síndrome de Barth/fisiopatologia , Síndrome de Barth/terapia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Recuperação de Função Fisiológica/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
12.
Physiol Genomics ; 50(11): 929-939, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30345904

RESUMO

Next-generation sequencing is commonly used to screen for pathogenic mutations in families with Mendelian disorders, but due to the pace of discoveries, gaps have widened for some diseases between genetic and pathophysiological knowledge. We recruited and analyzed 16 families with limb-girdle muscular dystrophy (LGMD) of Arab descent from Saudi Arabia and Sudan who did not have confirmed genetic diagnoses. The analysis included both traditional and next-generation sequencing approaches. Cellular and metabolic studies were performed on Pyroxd1 siRNA C2C12 myoblasts and controls. Pathogenic mutations were identified in eight of the 16 families. One Sudanese family of Arab descent residing in Saudi Arabia harbored a homozygous c.464A>G, p.Asn155Ser mutation in PYROXD1, a gene recently reported in association with myofibrillar myopathy and whose protein product reduces thiol residues. Pyroxd1 deficiency in murine C2C12 myoblasts yielded evidence for impairments of cellular proliferation, migration, and differentiation, while CG10721 (Pyroxd1 fly homolog) knockdown in Drosophila yielded a lethal phenotype. Further investigations indicated that Pyroxd1 does not localize to mitochondria, yet Pyroxd1 deficiency is associated with decreased cellular respiration. This study identified pathogenic mutations in half of the LGMD families from the cohort, including one in PYROXD1. Developmental impairments were demonstrated in vitro for Pyroxd1 deficiency and in vivo for CG10721 deficiency, with reduced metabolic activity in vitro for Pyroxd1 deficiency.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Adulto , Animais , Animais Geneticamente Modificados , Respiração Celular/genética , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Feminino , Humanos , Masculino , Camundongos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Mioblastos/patologia , Linhagem , Arábia Saudita , Sudão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA