Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cancer Res ; 83(10): 1699-1710, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129948

RESUMO

Despite negative results of clinical trials conducted on the overall population of patients with gastric cancer, PARP inhibitor (PARPi) therapeutic strategy still might represent a window of opportunity for a subpopulation of patients with gastric cancer. An estimated 7% to 12% of gastric cancers exhibit a mutational signature associated with homologous recombination (HR) failure, suggesting that these patients could potentially benefit from PARPis. To analyze responsiveness of gastric cancer to PARPi, we exploited a gastroesophageal adenocarcinoma (GEA) platform of patient-derived xenografts (PDX) and PDX-derived primary cells and selected 10 PDXs with loss-of-function mutations in HR pathway genes. Cell viability assays and preclinical trials showed that olaparib treatment was effective in PDXs harboring BRCA2 germline mutations and somatic inactivation of the second allele. Olaparib responsive tumors were sensitive to oxaliplatin as well. Evaluation of HR deficiency (HRD) and mutational signatures efficiently stratified responder and nonresponder PDXs. A retrospective analysis on 57 patients with GEA showed that BRCA2 inactivating variants were associated with longer progression-free survival upon platinum-based regimens. Five of 7 patients with BRCA2 germline mutations carried the p.K3326* variant, classified as "benign." However, familial history of cancer, the absence of RAD51 foci in tumor cells, and a high HRD score suggest a deleterious effect of this mutation in gastric cancer. In conclusion, PARPis could represent an effective therapeutic option for BRCA2-mutated and/or high HRD score patients with GEA, including patients with familial intestinal gastric cancer. SIGNIFICANCE: PARP inhibition is a potential strategy for treating patients with gastric cancer with mutated BRCA2 or homologous repair deficiency, including patients with familial intestinal gastric cancer, for whom BRCA2 germline testing should be recommended.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Neoplasias Gástricas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutação em Linhagem Germinativa , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Estudos Retrospectivos , Proteína BRCA1/genética , Proteína BRCA2/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico
2.
Cell Mol Life Sci ; 80(4): 111, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002363

RESUMO

Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Sobrevivência Celular , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Fosforilação , Proteínas de Ciclo Celular/metabolismo , Neoplasias/genética
3.
J Exp Clin Cancer Res ; 41(1): 319, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36324182

RESUMO

In the last two decades, clinical oncology has been revolutionized by the advent of targeted drugs. However, the efficacy of these therapies is significantly limited by primary and acquired resistance, that relies not only on cell-autonomous mechanisms but also on tumor microenvironment cues. Cancer-associated fibroblasts (CAFs) are extremely plastic cells of the tumor microenvironment. They not only produce extracellular matrix components that build up the structure of tumor stroma, but they also release growth factors, chemokines, exosomes, and metabolites that affect all tumor properties, including response to drug treatment. The contribution of CAFs to tumor progression has been deeply investigated and reviewed in several works. However, their role in resistance to anticancer therapies, and in particular to molecular therapies, has been largely overlooked. This review specifically dissects the role of CAFs in driving resistance to targeted therapies and discusses novel CAF targeted therapeutic strategies to improve patient survival.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral , Exossomos/metabolismo
4.
Gastric Cancer ; 24(4): 897-912, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755862

RESUMO

BACKGROUND: Trastuzumab is the only approved targeted therapy in patients with HER2-amplified metastatic gastric cancer (GC). Regrettably, in clinical practice, only a fraction of them achieves long-term benefit from trastuzumab-based upfront strategy. To advance precision oncology, we investigated the therapeutic efficacy of different HER2-targeted strategies, in HER2 "hyper"-amplified (≥ 8 copies) tumors. METHODS: We undertook a prospective evaluation of HER2 targeting with monoclonal antibodies, tyrosine kinase inhibitors and antibody-drug conjugates, in a selected subgroup of HER2 "hyper"-amplified gastric patient-derived xenografts (PDXs), through the design of ad hoc preclinical trials. RESULTS: Despite the high level of HER2 amplification, trastuzumab elicited a partial response only in 2 out of 8 PDX models. The dual-HER2 blockade with trastuzumab plus either pertuzumab or lapatinib led to complete and durable responses in 5 (62.5%) out of 8 models, including one tumor bearing a concomitant HER2 mutation. In a resistant PDX harboring KRAS amplification, the novel antibody-drug conjugate trastuzumab deruxtecan (but not trastuzumab emtansine) overcame KRAS-mediated resistance. We also identified a HGF-mediated non-cell-autonomous mechanism of secondary resistance to anti-HER2 drugs, responsive to MET co-targeting. CONCLUSION: These preclinical randomized trials clearly indicate that in HER2-driven gastric tumors, a boosted HER2 therapeutic blockade is required for optimal efficacy, leading to complete and durable responses in most of the cases. Our results suggest that a selected subpopulation of HER2-"hyper"-amplified GC patients could strongly benefit from this strategy. Despite the negative results of clinical trials, the dual blockade should be reconsidered for patients with clearly HER2-addicted cancers.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medicina de Precisão/métodos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Humanos , Imunoconjugados/uso terapêutico , Estudos Prospectivos , Proteínas Tirosina Quinases/antagonistas & inibidores , Neoplasias Gástricas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266104

RESUMO

Neuropilin-1 (NRP-1) is a co-receptor for semaphorins and vascular endothelial growth factor (VEGF) family members that can be expressed on cancer cells and tumor-infiltrating myeloid, endothelial and lymphoid cells. It has been linked to a tumor-promoting environment upon interaction with semaphorin 3A (Sema3A). Nanobodies (Nbs) targeting NRP-1 were generated for their potential to hamper the NRP-1/Sema3A interaction and their impact on colorectal carcinoma (CRC) development was evaluated in vivo through the generation of anti-NRP-1-producing CRC cells. We observed that tumor growth was significantly delayed and survival prolonged when the anti-NRP-1 Nbs were produced in vivo. We further analyzed the tumor microenvironment and observed that the pro-inflammatory MHC-IIhigh/trophic MHC-IIlow macrophage ratio was increased in tumors that produce anti-NRP-1 Nbs. This finding was corroborated by an increase in the expression of genes associated with MHC-IIhigh macrophages and a decrease in the expression of MHC-IIlow macrophage-associated genes in the macrophage pool sorted from anti-NRP-1 Nb-producing tumors. Moreover, we observed a significantly higher percentage of tumor-associated antigen-specific CD8+ T cells in tumors producing anti-NRP-1 Nbs. These data demonstrate that an intratumoral expression of NRP-1/Sema3A blocking biologicals increases anti-tumor immunity.

6.
Cancers (Basel) ; 12(8)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784465

RESUMO

Melanoma cells addicted to mutated BRAF oncogene activity can be targeted by specific kinase inhibitors until they develop resistance to therapy. We observed that the expression of Galectin-1 (Gal-1), a soluble ligand of Neuropilin-1 (NRP1), is upregulated in melanoma tumor samples and melanoma cells resistant to BRAF-targeted therapy. We then demonstrated that Gal-1 is a novel driver of resistance to BRAF inhibitors in melanoma and that its activity is linked to the concomitant upregulation of the NRP1 receptor observed in drug-resistant cells. Mechanistically, Gal-1 sustains increased expression of NRP1 and EGFR in drug-resistant melanoma cells. Moreover, consistent with its role as a NRP1 ligand, Gal-1 negatively controls p27 levels, a mechanism previously found to enable EGFR upregulation in cancer cells. Finally, the combined treatment with a Gal-1 inhibitor and a NRP1 blocking drug enabled resistant melanoma cell resensitization to BRAF-targeted therapy. In summary, we found that the activation of Galectin-1/NRP1 autocrine signaling is a new mechanism conferring independence from BRAF kinase activity to oncogene-addicted melanoma cells.

7.
Cancers (Basel) ; 12(8)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824383

RESUMO

Activation of the Nrf2-Keap1 pathway, the main intracellular defense against environmental stress, has been observed in several human cancers, including hepatocellular carcinoma (HCC). Here, we assessed whether distinct mechanisms of activation may be involved at different stages of hepatocarcinogenesis. We adopted an experimental model consisting of treatment with diethylnitrosamine (DENA) followed by a choline-devoid methionine-deficient (CMD) diet for 4 months. The CMD diet was then replaced with a basal diet, and the animals were killed at 6, 10 or 13 months after DENA injection. Nrf2 activation occurred at early steps of hepatocarcinogenesis and persisted throughout the tumorigenic process. While Nrf2 mutations were extremely frequent at early steps (90%), their incidence diminished with the progression to malignancy (25%). Conversely, while p62 was almost undetectable in early nodules, its accumulation occurred in HCCs, suggesting that Nrf2 pathway activation at late stages is mainly due to Keap1 sequestration by p62. We demonstrate that, in a model of hepatocarcinogenesis resembling human non-alcoholic fatty liver disease, Nrf2 mutations are the earliest molecular changes responsible for the activation of the Nrf2-Keap1 pathway. The progressive loss of mutations associated with a concomitant p62 accumulation implies that distinct mechanisms are responsible for Nrf2-Keap1 pathway activation at different stages of hepatocarcinogenesis.

8.
J Clin Invest ; 128(9): 3976-3990, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29953416

RESUMO

Cancer cell dependence on activated oncogenes is therapeutically targeted, but acquired resistance is virtually unavoidable. Here we show that the treatment of addicted melanoma cells with BRAF inhibitors, and of breast cancer cells with HER2-targeted drugs, led to an adaptive rise in neuropilin-1 (NRP1) expression, which is crucial for the onset of acquired resistance to therapy. Moreover, NRP1 levels dictated the efficacy of MET oncogene inhibitors in addicted stomach and lung carcinoma cells. Mechanistically, NRP1 induced a JNK-dependent signaling cascade leading to the upregulation of alternative effector kinases EGFR or IGF1R, which in turn sustained cancer cell growth and mediated acquired resistance to BRAF, HER2, or MET inhibitors. Notably, the combination with NRP1-interfering molecules improved the efficacy of oncogene-targeted drugs and prevented or even reversed the onset of resistance in cancer cells and tumor models. Our study provides the rationale for targeting the NRP1-dependent upregulation of tyrosine kinases, which are responsible for loss of responsiveness to oncogene-targeted therapies.


Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neuropilina-1/genética , Oncogenes , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Medicina de Precisão , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Fatores de Transcrição SOXE/antagonistas & inibidores , Fatores de Transcrição SOXE/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Res ; 78(4): 1058-1068, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29229599

RESUMO

Neuropilins are a class of cell surface proteins implicated in cell migration and angiogenesis, with aberrant expression in human tumors. Here, we show that the expression of Neuropilin-2 (NRP2) controls EGFR protein levels, thereby impinging on intracellular signaling, viability, and response to targeted therapies of oncogene-addicted cells. Notably, increased NRP2 expression in EGFR-addicted tumor cells led to downregulation of EGFR protein and tumor cell growth inhibition. NRP2 also blunted upregulation of an EGFR "rescue" pathway induced by targeted therapy in Met-addicted carcinoma cells. Cancer cells acquiring resistance to MET oncogene-targeted drugs invariably underwent NRP2 loss, a step required for EGFR upregulation. Mechanistic investigations revealed that NRP2 loss activated NFkB and upregulated the EGFR-associated protein KIAA1199/CEMIP, which is known to oppose the degradation of activated EGFR kinase. Notably, KIAA1199 silencing in oncogene-addicted tumor cells improved therapeutic responses and counteracted acquired drug resistance. Our findings define NRP2 as the pivotal switch of a novel broad-acting and actionable pathway controlling EGFR signaling, and driving resistance to therapies targeting oncogene-addiction.Significance: These important findings identify the cell surface molecule Nrp2 as the pivotal switch of a novel, actionable pathway driving EGFR upregulation and resistance to oncogene- targeted therapies. Cancer Res; 78(4); 1058-68. ©2017 AACR.


Assuntos
Neuropilina-2/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Humanos , Neuropilina-2/metabolismo , Oncogenes , Transdução de Sinais
10.
Methods Mol Biol ; 1493: 311-319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27787861

RESUMO

Ligand-induced endocytosis of receptors exposed on the plasma membrane is a fundamental regulatory step for their functional activation and interaction with intracellular signal transducers. Thus, elucidating the timing of endocytosis and tracing the intracellular fate of receptors is instrumental to understand their signaling cascade in different conditions. Here we describe an assay for the study of endocytosis and intracellular trafficking of individual surface receptors, in living cells subject to different experimental challenges. We applied this method for studying the functional interaction between semaphorin coreceptor Neuropilin-1 and a tyrosine kinase receptor exposed on the cell surface.


Assuntos
Anticorpos/metabolismo , Endocitose , Neuropilina-1/metabolismo , Receptores de Superfície Celular/metabolismo , Células A549 , Humanos
11.
Cancer Cell ; 24(6): 695-709, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24332039

RESUMO

Recruitment of tumor-associated macrophages (TAMs) into avascular areas sustains tumor progression; however, the underlying guidance mechanisms are unknown. Here, we report that hypoxia-induced Semaphorin 3A (Sema3A) acts as an attractant for TAMs by triggering vascular endothelial growth factor receptor 1 phosphorylation through the associated holoreceptor, composed of Neuropilin-1 (Nrp1) and PlexinA1/PlexinA4. Importantly, whereas Nrp1 levels are downregulated in the hypoxic environment, Sema3A continues to regulate TAMs in an Nrp1-independent manner by eliciting PlexinA1/PlexinA4-mediated stop signals, which retain them inside the hypoxic niche. Consistently, gene deletion of Nrp1 in macrophages favors TAMs' entrapment in normoxic tumor regions, which abates their pro-angiogenic and immunosuppressive functions, hence inhibiting tumor growth and metastasis. This study shows that TAMs' heterogeneity depends on their localization, which is tightly controlled by Sema3A/Nrp1 signaling.


Assuntos
Macrófagos/fisiologia , Neoplasias Experimentais/irrigação sanguínea , Neovascularização Patológica/prevenção & controle , Neuropilina-1/fisiologia , Semaforina-3A/fisiologia , Transdução de Sinais/fisiologia , Animais , Hipóxia Celular , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/genética , Semaforina-3A/antagonistas & inibidores
12.
Cancer Res ; 72(22): 5801-11, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22986738

RESUMO

Neuropilin-1 (NRP1) is a coreceptor for multiple extracellular ligands. NRP1 is widely expressed in cancer cells and in advanced human tumors; however, its functional relevance and signaling mechanisms are unclear. Here, we show that NRP1 expression controls viability and proliferation of different cancer cells, independent of its short intracellular tail. We found that the extracellular domain of NRP1 interacts with the EGF receptor (EGFR) and promotes its signaling cascade elicited upon EGF or TGF-α stimulation. Upon NRP1 silencing, the ability of ligand-bound EGFR to cluster on the cell surface, internalize, and activate the downstream AKT pathway is severely impaired. EGFR is frequently activated in human tumors due to overexpression, mutation, or sustained autocrine/paracrine stimulation. Here we show that NRP1-blocking antibodies and NRP1 silencing can counteract ligand-induced EGFR activation in cancer cells. Thus our findings unveil a novel molecular mechanism by which NRP1 can control EGFR signaling and tumor growth.


Assuntos
Receptores ErbB/metabolismo , Neuropilina-1/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Endocitose , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neuropilina-1/deficiência , Neuropilina-1/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transdução de Sinais , Transfecção , Transplante Heterólogo
13.
J Clin Invest ; 120(8): 2684-98, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20664171

RESUMO

Semaphorin 3E (Sema3E) is a secreted molecule implicated in axonal path finding and inhibition of developmental and postischemic angiogenesis. Sema3E is also highly expressed in metastatic cancer cells, but its mechanistic role in tumor progression was not understood. Here we show that expression of Sema3E and its receptor Plexin D1 correlates with the metastatic progression of human tumors. Consistent with the clinical data, knocking down endogenous expression of either Sema3E or Plexin D1 in human metastatic carcinoma cells hampered their metastatic potential when injected into mice, while tumor growth was not markedly affected. Conversely, overexpression of exogenous Sema3E in cancer cells increased their invasiveness, transendothelial migration, and metastatic spreading, although it inhibited tumor vessel formation, resulting in reduced tumor growth in mice. The proinvasive and metastatic activity of Sema3E in tumor cells was dependent on transactivation of the Plexin D1-associated ErbB2/Neu oncogenic kinase. In sum, Sema3E-Plexin D1 signaling in cancer cells is crucially implicated in their metastatic behavior and may therefore be a promising target for strategies aimed at blocking tumor metastasis.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Metástase Neoplásica , Semaforinas/fisiologia , Transdução de Sinais/fisiologia , Animais , Células COS , Linhagem Celular Tumoral , Movimento Celular , Chlorocebus aethiops , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Receptor ErbB-2/fisiologia , Semaforinas/análise , Proteínas ras/genética , Proteínas rho de Ligação ao GTP/análise
14.
Cell Adh Migr ; 1(2): 62-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-19329883

RESUMO

Semaphorins are a large family of secreted and membrane-bound molecules initially implicated in the development of the nervous system and in axon guidance. More recently, they have been found to regulate cell adhesion and cell motility, angiogenesis, immune function and tumour progression. Notably, Semaphorins have been implicated with opposite functions in cancer: either as putative tumor suppressors and anti-angiogenic factors, or as mediating tumour angiogenesis, invasion and metastasis. Interestingly, Semaphorins may display divergent activities in different cell types. These multifaceted functions may be explained by the involvement of different kinds of semaphorin receptor complexes, and by the consequent activation of multiple signaling pathways, in different cells or different functional stages. Semaphorin signaling is largely mediated by the Plexins. However, semaphorin receptor complexes may also include Neuropilins and tyrosine kinases implicated in cancer. In this review, we will focus on major open questions concerning the potential role of Semaphorin signals in cancer.


Assuntos
Invasividade Neoplásica , Metástase Neoplásica , Semaforinas/metabolismo , Transdução de Sinais , Animais , Humanos , Receptores de Superfície Celular/metabolismo , Semaforinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA