Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(8): e18539, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560662

RESUMO

Many consumers who are aware of the importance of good nutrition demand quality food alternatives. In particular, many of them are looking for quality, plant-based protein sources such as quinoa. The objective of this work was to evaluate the techno-functional properties of gluten-free pasta from hyperprotein quinoa flour. Pasta mixes were made from gluten-free flours, corn, rice, cassava starch, hyperprotein quinoa flour and defatted high protein quinoa flour, which were subsequently extruded. The flow rheological properties of aqueous dispersions of flour mixtures were analyzed before and after the pasting test. In addition, thermal properties were analyzed by differential scanning calorimetry and structural properties by Fourier transform infrared spectroscopy. The results showed a change of flow from dilatant (n > 1) to pseudoplastic (n < 1) after the pasting test. In addition, a positive correlation was observed between hyperprotein defatted quinoa flour and viscosity, and a negative correlation with hyperprotein quinoa flour. Regarding thermal properties, it was found that all blends showed low gelatinization enthalpy values, attributed to the high proportions of HQF and HDQF. Spectroscopic analysis showed that the extrusion did not significantly affect the native structure of the protein, by monitoring the intensities of the 1648 cm-1, 1656 cm-1 and 1667 cm-1 bands associated with the Random coil, α-helix, ß-turns secondary structures, respectively. It was possible to conclude that both hyperprotein quinoa flour and defatted hyperprotein quinoa flours have a differential influence on the techno-functional properties of pasta. The first one, tends to reduce viscosity and consistency while the second one tends to increase it. Finally, moderate temperatures during extrusion did not cause significant changes in starch and protein structures as determined by spectroscopic study.

2.
F1000Res ; 12: 1477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38854700

RESUMO

Background: The growing popularity of nutrient-rich foods, among which is quinoa, is due to the increasing demand for healthier choices. Oils and hydrolyzed proteins from these foods may help prevent various health issues. The objective of this work was to perform extraction from the endosperm of the grain from high-protein quinoa flour by physical means via a differential abrasive milling process and extracting the oil using an automatic auger extractor at 160°C, as well as characterizing extracted oil. Methods: Quinoa oil extraction and physicochemical characterization were carried out. Chemical and physical quality indexes of quinoa oil were established, and both characterizations were conducted based on international and Columbian standards. Thermal properties were evaluated by differential scanning calorimetry, and rheological and interfacial properties of the oil were evaluated using hybrid rheometers and Drop Tensiometers, respectively, to determine its potential for obtaining functional foods. Results: The result was 10.5 g of oil/ 100 g of endosperm, with a moisture content of 0.12%, insoluble impurities of 0.017%, peroxide index of 18.5 meq O 2/kg of oil, saponification index of 189.6 mg potassium hydroxide/g of oil, refractive index of 1.401, and a density of 0.9179 g/cm 3 at 20°C. Regarding contaminating metals, it presented 7 mg of iron/kg of oil, a value higher than previously established limits of 5 mg of iron/kg of oil. The oil contained 24.9% oleic acid, 55.3% linoleic acid, and 4% linolenic acid, demonstrating antioxidant capacity. Quinoa oil showed thermal properties similar to other commercial oils. Conclusions: The interfacial and rheological properties were suitable for the stabilization of emulsions, gels, and foams, which are important in various industrial applications and could facilitate the development of new products. The extracted quinoa oil presented similar characteristics to other commercial oils, which could make it a potential product for commercialization and application in different industries.


Assuntos
Chenopodium quinoa , Óleos de Plantas , Reologia , Chenopodium quinoa/química , Óleos de Plantas/química , Fenômenos Químicos , Temperatura
3.
Foods ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359997

RESUMO

This research aimed to produce gluten-free snacks on a pilot scale from quinoa flour. These snacks experienced an extrusion process, followed by baking. The effects of these technological processes on carbohydrate and protein digestibility, extractable phenolic compounds (EPP), hydrolyzable phenolic compounds (HPP), antioxidant capacity, and physical properties were evaluated in raw quinoa flour and extruded snacks. Extrusion increased digestible starch (RDS) from 7.33 g/100 g bs to 77.33 g /100 g bs. Resistant starch (RS) showed a variation of 2 g/100 g bs. It is noteworthy that protein digestibility increased up to 94.58 g/100 bs after extrusion and baking. These processes increased HPP content, while EPP and carotenoid content decreased. The samples showed significant differences (p < 0.05) in the antioxidant properties determined through the DPPH and ABTS methods. Values of 19.72 ± 0.81 µmol T/g were observed in snacks and 13.16 ± 0.2 µmol T/g in raw flour, but a reduction of up to 16.10 ± 0.68 µmol T/g was observed during baking. The baking process reduced the work of crispness (Wcr) from 0.79 to 0.23 N.mm, while the saturation (C*) was higher in baked ones, showing higher color intensity. The baking process did not influence the viscosity profile. The results in this study respond to the growing interest of the food industry to satisfy consumer demand for new, healthy, and expanded gluten-free snacks with bioactive compounds.

4.
F1000Res ; 11: 1575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37745628

RESUMO

Background: Gelatin is a protein obtained by partial hydrolysis of collagen contained in skins, connective tissue and/or animal bones, which are by-products of the meat industry. The main raw material to produce bovine gelatin is the dermis of the skin, but there is a variation in fat and moisture content depending on the bovine skin origin. As a contribution to the circular economy and sustainability, these by-products with high fat content and the fat released from them during the gelatin production process can be managed for food industries, mainly in the development or formulation of animal feed. Methods: For the initial physicochemical characterization, moisture, fat, protein and ashes content were determined. Once the by-products with high fat content were identified, alteration parameters such as acidity, peroxide and saponification indexes were evaluated. Additionally, thermal, rheological and fatty acid composition characterization was carried out in order to study the possible applications of the by-products. Results and Discussion: The results showed that certain by-products have a fat content of less than 15%, so the viability of their use is limited. On the other hand, some by-products have a fat content exceeding 30%; however, their extraction can only be done manually, resulting in a low efficiency process. By-products removed from the supernatant in the extractors presented fat percentages of 99.9 and 98.9%, and there exists the possibility of implementing a mechanical method for their extraction. The analysis of alteration and oxidation parameters, thermal and rheological characterization, fatty acid profile and solid fat content were exclusively conducted on these high-fat content by-products. Based on the characterization, these by-products could be valued and incorporated into animal feed formulations. Nevertheless, certain limitations exist for their use in applications such as biodiesel production or the food industry.


Assuntos
Ração Animal , Gelatina , Animais , Bovinos , Biocombustíveis , Ácidos Graxos , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA