Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 65(22): 15433-15442, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36356320

RESUMO

Upregulation of the fibroblast growth factor receptor (FGFR) signaling pathway has been implicated in multiple cancer types, including cholangiocarcinoma and bladder cancer. Consequently, small molecule inhibition of FGFR has emerged as a promising therapy for patients suffering from these diseases. First-generation pan-FGFR inhibitors, while highly effective, suffer from several drawbacks. These include treatment-related hyperphosphatemia and significant loss of potency for the mutant kinases. Herein, we present the discovery and optimization of novel FGFR2/3 inhibitors that largely maintain potency for the common gatekeeper mutants and have excellent selectivity over FGFR1. A combination of meticulous structure-activity relationship (SAR) analysis, structure-based drug design, and medicinal chemistry rationale ultimately led to compound 29, a potent and selective FGFR2/3 inhibitor with excellent in vitro absorption, distribution, metabolism, excretion (ADME), and pharmacokinetics in rat. A pharmacodynamic study of a closely related compound established that maximum inhibition of downstream ERK phosphorylation could be achieved with no significant effect on serum phosphate levels relative to vehicle.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases , Receptores de Fatores de Crescimento de Fibroblastos , Animais , Ratos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Transdução de Sinais , Relação Estrutura-Atividade , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/química , Receptores de Fatores de Crescimento de Fibroblastos/efeitos dos fármacos
2.
Bioorg Med Chem Lett ; 28(9): 1436-1445, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29615341

RESUMO

The plant metabolite salvinorin A potently and selectively agonizes the human kappa-opioid receptor, an emerging target for next-generation analgesics. Here we review analogs of the salvinorin chemotype and their effects on selectivity, affinity and potency. Extensive peripheral modifications using isolated salvinorin A have delivered a trove of SAR information. More deep-seated changes are now possible by advances in chemical synthesis.


Assuntos
Diterpenos Clerodânicos/farmacologia , Receptores Opioides kappa/agonistas , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/isolamento & purificação , Humanos , Conformação Molecular , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 28(16): 2770-2772, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29426768

RESUMO

Salvinorin A (SalA) is a potent and selective agonist of the kappa-opioid receptor (KOR), but its instability has frustrated medicinal chemistry efforts. Treatment of SalA with weak bases like DBU leads to C8 epimerization with loss of receptor affinity and signaling potency. Here we show that replacement of C20 with H and replacement of O6 with CH2 stabilizes the SalA scaffold relative to its C8 epimer, so much so that epimerization is completely supressed. This new compound, O6C-20-nor-SalA, retains high potency for agonism of KOR.


Assuntos
Carbono/farmacologia , Diterpenos Clerodânicos/farmacologia , Oxigênio/farmacologia , Receptores Opioides kappa/agonistas , Carbono/química , Diterpenos Clerodânicos/síntese química , Diterpenos Clerodânicos/química , Humanos , Conformação Molecular , Oxigênio/química , Estereoisomerismo , Relação Estrutura-Atividade
4.
ACS Cent Sci ; 3(12): 1329-1336, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29296674

RESUMO

Salvinorin A (SalA) is a plant metabolite that agonizes the human kappa-opioid receptor (κ-OR) with high affinity and high selectivity over mu- and delta-opioid receptors. Its therapeutic potential has stimulated extensive semisynthetic studies and total synthesis campaigns. However, structural modification of SalA has been complicated by its instability, and efficient total synthesis has been frustrated by its dense, complex architecture. Treatment of strategic bonds in SalA as dynamic and dependent on structural perturbation enabled the identification of an efficient retrosynthetic pathway. Here we show that deletion of C20 simultaneously stabilizes the SalA skeleton, simplifies its synthesis, and retains its high affinity and selectivity for the κ-OR. The resulting 10-step synthesis now opens the SalA scaffold to deep-seated property modification. Finally, we describe a workflow to identify structural changes that retain molecular complexity, but reduce synthetic complexity-two related, but independent ways of looking at complexity.

5.
Nat Chem ; 7(3): 187-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25698322
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA