Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Biol Chem ; 300(5): 107271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588813

RESUMO

Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.


Assuntos
Doença de Lafora , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitina-Proteína Ligases , Doença de Lafora/metabolismo , Doença de Lafora/genética , Doença de Lafora/patologia , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Humanos , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Modelos Animais de Doenças , Glicogênio/metabolismo , Glicogênio/genética
2.
Am J Physiol Endocrinol Metab ; 326(4): E428-E442, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324258

RESUMO

Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development.NEW & NOTEWORTHY Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.


Assuntos
Glucagon , Insulina , Humanos , Cães , Animais , Glucagon/metabolismo , Insulina/metabolismo , Transcriptoma , Glucose/metabolismo , Fígado/metabolismo , Gluconeogênese/genética , Glicemia/metabolismo
3.
Sci Transl Med ; 16(730): eadf1691, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232139

RESUMO

Glycogen synthase 1 (GYS1), the rate-limiting enzyme in muscle glycogen synthesis, plays a central role in energy homeostasis and has been proposed as a therapeutic target in multiple glycogen storage diseases. Despite decades of investigation, there are no known potent, selective small-molecule inhibitors of this enzyme. Here, we report the preclinical characterization of MZ-101, a small molecule that potently inhibits GYS1 in vitro and in vivo without inhibiting GYS2, a related isoform essential for synthesizing liver glycogen. Chronic treatment with MZ-101 depleted muscle glycogen and was well tolerated in mice. Pompe disease, a glycogen storage disease caused by mutations in acid α glucosidase (GAA), results in pathological accumulation of glycogen and consequent autophagolysosomal abnormalities, metabolic dysregulation, and muscle atrophy. Enzyme replacement therapy (ERT) with recombinant GAA is the only approved treatment for Pompe disease, but it requires frequent infusions, and efficacy is limited by suboptimal skeletal muscle distribution. In a mouse model of Pompe disease, chronic oral administration of MZ-101 alone reduced glycogen buildup in skeletal muscle with comparable efficacy to ERT. In addition, treatment with MZ-101 in combination with ERT had an additive effect and could normalize muscle glycogen concentrations. Biochemical, metabolomic, and transcriptomic analyses of muscle tissue demonstrated that lowering of glycogen concentrations with MZ-101, alone or in combination with ERT, corrected the cellular pathology in this mouse model. These data suggest that substrate reduction therapy with GYS1 inhibition may be a promising therapeutic approach for Pompe disease and other glycogen storage diseases.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Camundongos , Animais , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Glicogênio Sintase/metabolismo , Glicogênio Sintase/farmacologia , Camundongos Knockout , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Terapia de Reposição de Enzimas/métodos
4.
bioRxiv ; 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37808670

RESUMO

Glucagon rapidly and profoundly simulates hepatic glucose production (HGP), but for reasons which are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course and relevance (to metabolic flux) of glucagon mediated molecular events in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a 6-fold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group glucose remained at basal while in the other glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) but only partially sustained increase in hepatic cAMP over 4h, a continued elevation in G6P, and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis and HGP increased rapidly, peaking at 30 min, then returned to baseline over the next 3h (although glucagons stimulatory effect on HGP was sustained relative to the hyperglycemic control group). Hepatic gluconeogenic flux did not increase due to lack of glucagon effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, and downregulation of genes involved in extracellular matrix assembly and development.

5.
Front Psychiatry ; 14: 1091771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255681

RESUMO

Objectives: To identify predictors of mortality in people with active and challenging behavioral and psychological symptoms of dementia (BPSD). Design: A retrospective case-control study was designed to compare those referred to Dementia Support Australia (DSA) who died in the 12 months to November 2016, with an equal number of controls who did not die. An audit tool was designed after literature review and expert opinion from the service. Odds ratio calculations and the Mann-Whitney U test were used to assess for difference. Setting: Residents of Australian residential aged care facilities with BPSD referred to the DSA service. Participants: Of 476 patients referred to DSA during the study period, 44 died. 44 controls were randomly selected from those remaining matched for age and sex. Results: Significant differences included higher rates of benzodiazepine use, drowsiness, delirium, reduced oral intake and discussions about goals of care in those who died. Those who died were referred to the service for a shorter period and had more frequent contact between DSA and nurses at the nursing homes. Increase in opioid use and loss of skin integrity in those who died approached significance. The overall end of life course demonstrated a complex set of needs with frequent delirium, pain and frailty. Conclusion: Further study is required to determine the optimal care for those with BPSD at the end of their lives. This study would indicate complex end of life care needs and point to a role for palliative care support.

6.
Cell Rep ; 40(1): 111041, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793618

RESUMO

Glycogen is the primary energy reserve in mammals, and dysregulation of glycogen metabolism can result in glycogen storage diseases (GSDs). In muscle, glycogen synthesis is initiated by the enzymes glycogenin-1 (GYG1), which seeds the molecule by autoglucosylation, and glycogen synthase-1 (GYS1), which extends the glycogen chain. Although both enzymes are required for proper glycogen production, the nature of their interaction has been enigmatic. Here, we present the human GYS1:GYG1 complex in multiple conformations representing different functional states. We observe an asymmetric conformation of GYS1 that exposes an interface for close GYG1 association, and propose this state facilitates handoff of the GYG1-associated glycogen chain to a GYS1 subunit for elongation. Full activation of GYS1 widens the GYG1-binding groove, enabling GYG1 release concomitant with glycogen chain growth. This structural mechanism connecting chain nucleation and extension explains the apparent stepwise nature of glycogen synthesis and suggests distinct states to target for GSD-modifying therapeutics.


Assuntos
Glicogênio Sintase , Glicogenólise , Glicoproteínas , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Humanos
7.
Cell Metab ; 33(7): 1404-1417.e9, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34043942

RESUMO

Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.


Assuntos
Encéfalo/metabolismo , Glucosamina/metabolismo , Glicogênio/fisiologia , Processamento de Proteína Pós-Traducional , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glicogênio/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicogenólise/genética , Glicosilação , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doença de Lafora/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional/genética
8.
Ann Clin Transl Neurol ; 7(11): 2186-2198, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33034425

RESUMO

OBJECTIVE: Adult polyglucosan body disease (APBD) is an adult-onset neurological variant of glycogen storage disease type IV. APBD is caused by recessive mutations in the glycogen branching enzyme gene, and the consequent accumulation of poorly branched glycogen aggregates called polyglucosan bodies in the nervous system. There are presently no treatments for APBD. Here, we test whether downregulation of glycogen synthesis is therapeutic in a mouse model of the disease. METHODS: We characterized the effects of knocking out two pro-glycogenic proteins in an APBD mouse model. APBD mice were crossed with mice deficient in glycogen synthase (GYS1), or mice deficient in protein phosphatase 1 regulatory subunit 3C (PPP1R3C), a protein involved in the activation of GYS1. Phenotypic and histological parameters were analyzed and glycogen was quantified. RESULTS: APBD mice deficient in GYS1 or PPP1R3C demonstrated improvements in life span, morphology, and behavioral assays of neuromuscular function. Histological analysis revealed a reduction in polyglucosan body accumulation and of astro- and micro-gliosis in the brains of GYS1- and PPP1R3C-deficient APBD mice. Brain glycogen quantification confirmed the reduction in abnormal glycogen accumulation. Analysis of skeletal muscle, heart, and liver found that GYS1 deficiency reduced polyglucosan body accumulation in all three tissues and PPP1R3C knockout reduced skeletal muscle polyglucosan bodies. INTERPRETATION: GYS1 and PPP1R3C are effective therapeutic targets in the APBD mouse model. These findings represent a critical step toward the development of a treatment for APBD and potentially other glycogen storage disease type IV patients.


Assuntos
Doença de Depósito de Glicogênio/metabolismo , Glicogênio Sintase/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Doenças do Sistema Nervoso/metabolismo , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Doença de Depósito de Glicogênio/fisiopatologia , Doença de Depósito de Glicogênio/terapia , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/terapia
9.
J Med Chem ; 63(7): 3538-3551, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32134266

RESUMO

The overaccumulation of glycogen appears as a hallmark in various glycogen storage diseases (GSDs), including Pompe, Cori, Andersen, and Lafora disease. Accumulating evidence suggests that suppression of glycogen accumulation represents a potential therapeutic approach for treating these GSDs. Using a fluorescence polarization assay designed to screen for inhibitors of the key glycogen synthetic enzyme, glycogen synthase (GS), we identified a substituted imidazole, (rac)-2-methoxy-4-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)-4-phenyl-1H-imidazol-5-yl)phenol (H23), as a first-in-class inhibitor for yeast GS 2 (yGsy2p). Data from X-ray crystallography at 2.85 Å, as well as kinetic data, revealed that H23 bound within the uridine diphosphate glucose binding pocket of yGsy2p. The high conservation of residues between human and yeast GS in direct contact with H23 informed the development of around 500 H23 analogs. These analogs produced a structure-activity relationship profile that led to the identification of a substituted pyrazole, 4-(4-(4-hydroxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)pyrogallol, with a 300-fold improved potency against human GS. These substituted pyrazoles possess a promising scaffold for drug development efforts targeting GS activity in GSDs associated with excess glycogen accumulation.


Assuntos
Inibidores Enzimáticos/química , Glicogênio Sintase/antagonistas & inibidores , Imidazóis/química , Pirazóis/química , Animais , Caenorhabditis elegans/enzimologia , Cristalografia por Raios X , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Glicogênio Sintase/química , Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Cinética , Estrutura Molecular , Ligação Proteica , Pirazóis/síntese química , Pirazóis/metabolismo , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade
10.
Carbohydr Polym ; 230: 115651, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887930

RESUMO

The addition of phosphate groups into glycogen modulates its branching pattern and solubility which all impact its accessibility to glycogen interacting enzymes. As glycogen architecture modulates its metabolism, it is essential to accurately evaluate and quantify its phosphate content. Simultaneous direct quantitation of glucose and its phosphate esters requires an assay with high sensitivity and a robust dynamic range. Herein, we describe a highly-sensitive method for the accurate detection of both glycogen-derived glucose and glucose-phosphate esters utilizing gas-chromatography coupled mass spectrometry. Using this method, we observed higher glycogen levels in the liver compared to skeletal muscle, but skeletal muscle contained many more phosphate esters. Importantly, this method can detect femtomole levels of glucose and glucose phosphate esters within an extremely robust dynamic range with excellent accuracy and reproducibility. The method can also be easily adapted for the quantification of plant starch, amylopectin or other biopolymers.

11.
J Clin Endocrinol Metab ; 105(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628455

RESUMO

CONTEXT: Glycogenin is considered to be an essential primer for glycogen biosynthesis. Nevertheless, patients with glycogenin-1 deficiency due to biallelic GYG1 (NM_004130.3) mutations can store glycogen in muscle. Glycogenin-2 has been suggested as an alternative primer for glycogen synthesis in patients with glycogenin-1 deficiency. OBJECTIVE: The objective of this article is to investigate the importance of glycogenin-1 and glycogenin-2 for glycogen synthesis in skeletal and cardiac muscle. DESIGN, SETTING, AND PATIENTS: Glycogenin-1 and glycogenin-2 expression was analyzed by Western blot, mass spectrometry, and immunohistochemistry in liver, heart, and skeletal muscle from controls and in skeletal and cardiac muscle from patients with glycogenin-1 deficiency. RESULTS: Glycogenin-1 and glycogenin-2 both were found to be expressed in the liver, but only glycogenin-1 was identified in heart and skeletal muscle from controls. In patients with truncating GYG1 mutations, neither glycogenin-1 nor glycogenin-2 was expressed in skeletal muscle. However, nonfunctional glycogenin-1 but not glycogenin-2 was identified in cardiac muscle from patients with cardiomyopathy due to GYG1 missense mutations. By immunohistochemistry, the mutated glycogenin-1 colocalized with the storage of glycogen and polyglucosan in cardiomyocytes. CONCLUSIONS: Glycogen can be synthesized in the absence of glycogenin, and glycogenin-1 deficiency is not compensated for by upregulation of functional glycogenin-2. Absence of glycogenin-1 leads to the focal accumulation of glycogen and polyglucosan in skeletal muscle fibers. Expression of mutated glycogenin-1 in the heart is deleterious, and it leads to storage of abnormal glycogen and cardiomyopathy.


Assuntos
Glucosiltransferases/genética , Doença de Depósito de Glicogênio/genética , Glicoproteínas/genética , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Glucanos/metabolismo , Glicogenólise/genética , Humanos , Masculino , Mutação , Mutação de Sentido Incorreto
12.
Cell Rep ; 29(6): 1410-1418.e6, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693883

RESUMO

Browning induction or transplantation of brown adipose tissue (BAT) or brown/beige adipocytes derived from progenitor or induced pluripotent stem cells (iPSCs) can represent a powerful strategy to treat metabolic diseases. However, our poor understanding of the mechanisms that govern the differentiation and activation of brown adipocytes limits the development of such therapy. Various genetic factors controlling the differentiation of brown adipocytes have been identified, although most studies have been performed using in vitro cultured pre-adipocytes. We investigate here the differentiation of brown adipocytes from adipose progenitors in the mouse embryo. We demonstrate that the formation of multiple lipid droplets (LDs) is initiated within clusters of glycogen, which is degraded through glycophagy to provide the metabolic substrates essential for de novo lipogenesis and LD formation. Therefore, this study uncovers the role of glycogen in the generation of LDs.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Embrião de Mamíferos/metabolismo , Glicogênio/metabolismo , Gotículas Lipídicas/metabolismo , Adipócitos Marrons/ultraestrutura , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/ultraestrutura , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Glicogênio/ultraestrutura , Humanos , Gotículas Lipídicas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , PPAR gama/genética , PPAR gama/metabolismo , RNA Interferente Pequeno , Transcriptoma
13.
Cell Metab ; 30(4): 689-705.e6, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353261

RESUMO

Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.


Assuntos
Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Corpos de Inclusão/efeitos dos fármacos , Doença de Lafora/terapia , alfa-Amilases Pancreáticas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Imunoglobulina G/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , alfa-Amilases Pancreáticas/uso terapêutico , Ratos , Proteínas Recombinantes de Fusão/uso terapêutico
14.
Proc Natl Acad Sci U S A ; 115(13): 3350-3355, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531036

RESUMO

Inorganic polyphosphate is a ubiquitous, linear biopolymer built of up to thousands of phosphate residues that are linked by energy-rich phosphoanhydride bonds. Polyphosphate kinases of the family 2 (PPK2) use polyphosphate to catalyze the reversible phosphorylation of nucleotide phosphates and are highly relevant as targets for new pharmaceutical compounds and as biocatalysts for cofactor regeneration. PPK2s can be classified based on their preference for nucleoside mono- or diphosphates or both. The detailed mechanism of PPK2s and the molecular basis for their substrate preference is unclear, which is mainly due to the lack of high-resolution structures with substrates or substrate analogs. Here, we report the structural analysis and comparison of a class I PPK2 (ADP-phosphorylating) and a class III PPK2 (AMP- and ADP-phosphorylating), both complexed with polyphosphate and/or nucleotide substrates. Together with complementary biochemical analyses, these define the molecular basis of nucleotide specificity and are consistent with a Mg2+ catalyzed in-line phosphoryl transfer mechanism. This mechanistic insight will guide the development of PPK2 inhibitors as potential antibacterials or genetically modified PPK2s that phosphorylate alternative substrates.


Assuntos
Deinococcus/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Cristalografia por Raios X , Cinética , Ligantes , Fosforilação , Conformação Proteica , Especificidade por Substrato
15.
J Biol Chem ; 293(19): 7117-7125, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29483193

RESUMO

Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase.


Assuntos
Glicogênio/metabolismo , Doença de Lafora/metabolismo , Neurônios/metabolismo , Animais , Configuração de Carboidratos , Proteínas de Transporte/genética , Modelos Animais de Doenças , Glicogênio/biossíntese , Glicogênio/química , Glicogênio Fosforilase/genética , Humanos , Doença de Lafora/genética , Doença de Lafora/patologia , Doença de Lafora/terapia , Fosfatos/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina-Proteína Ligases/genética
16.
Microbiology (Reading) ; 163(11): 1664-1679, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29034854

RESUMO

During conditions of nutrient limitation bacteria undergo a series of global gene expression changes to survive conditions of amino acid and fatty acid starvation. Rapid reallocation of cellular resources is brought about by gene expression changes coordinated by the signalling nucleotides' guanosine tetraphosphate or pentaphosphate, collectively termed (p)ppGpp and is known as the stringent response. The stringent response has been implicated in bacterial virulence, with elevated (p)ppGpp levels being associated with increased virulence gene expression. This has been observed in the highly pathogenic Francisella tularensis sub spp. tularensis SCHU S4, the causative agent of tularaemia. Here, we aimed to artificially induce the stringent response by culturing F. tularensis in the presence of the amino acid analogue l-serine hydroxamate. Serine hydroxamate competitively inhibits tRNAser aminoacylation, causing an accumulation of uncharged tRNA. The uncharged tRNA enters the A site on the translating bacterial ribosome and causes ribosome stalling, in turn stimulating the production of (p)ppGpp and activation of the stringent response. Using the essential virulence gene iglC, which is encoded on the Francisella pathogenicity island (FPI) as a marker of active stringent response, we optimized the culture conditions required for the investigation of virulence gene expression under conditions of nutrient limitation. We subsequently used whole genome RNA-seq to show how F. tularensis alters gene expression on a global scale during active stringent response. Key findings included up-regulation of genes involved in virulence, stress responses and metabolism, and down-regulation of genes involved in metabolite transport and cell division. F. tularensis is a highly virulent intracellular pathogen capable of causing debilitating or fatal disease at extremely low infectious doses. However, virulence mechanisms are still poorly understood. The stringent response is widely recognized as a diverse and complex bacterial stress response implicated in virulence. This work describes the global gene expression profile of F. tularensis SCHU S4 under active stringent response for the first time. Herein we provide evidence for an association of active stringent response with FPI virulence gene expression. Our results further the understanding of the molecular basis of virulence and regulation thereof in F. tularensis. These results also support research into genes involved in (p)ppGpp production and polyphosphate biosynthesis and their applicability as targets for novel antimicrobials.


Assuntos
Adaptação Biológica/fisiologia , Francisella tularensis/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Ilhas Genômicas/genética , Transcriptoma/fisiologia , Virulência/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Genes Reguladores/genética , Genes Reguladores/fisiologia , Ilhas Genômicas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Proteoma/fisiologia , Análise de Sequência de RNA , Serina/análogos & derivados , Serina/toxicidade , Estresse Fisiológico , Ativação Transcricional/genética , Ativação Transcricional/fisiologia , Transcriptoma/genética , Virulência/genética
17.
J Biol Chem ; 292(25): 10455-10464, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28483921

RESUMO

Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal.


Assuntos
Núcleo Celular/metabolismo , Fígado Gorduroso/metabolismo , Glicogênio/deficiência , Hepatócitos/metabolismo , Resistência à Insulina , Transdução de Sinais , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Transporte Ativo do Núcleo Celular/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Núcleo Celular/genética , Núcleo Celular/patologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Glicogênio/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Hepatócitos/patologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Glycobiology ; 27(5): 416-424, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077463

RESUMO

y: Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions.


Assuntos
Glucose/metabolismo , Doença de Depósito de Glicogênio/diagnóstico , Glicogênio/isolamento & purificação , Doença de Lafora/diagnóstico , Animais , Ensaio de Imunoadsorção Enzimática , Glutationa Transferase/química , Glicogênio/química , Glicogênio/metabolismo , Doença de Depósito de Glicogênio/metabolismo , Humanos , Doença de Lafora/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/química , Camundongos , Proteínas Musculares/química , Proteínas Recombinantes/química
19.
Biochemistry ; 56(1): 179-188, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27935293

RESUMO

Glycogen synthase (GS) is the rate limiting enzyme in the synthesis of glycogen. Eukaryotic GS is negatively regulated by covalent phosphorylation and allosterically activated by glucose-6-phosphate (G-6-P). To gain structural insights into the inhibited state of the enzyme, we solved the crystal structure of yGsy2-R589A/R592A to a resolution of 3.3 Å. The double mutant has an activity ratio similar to the phosphorylated enzyme and also retains the ability to be activated by G-6-P. When compared to the 2.88 Å structure of the wild-type G-6-P activated enzyme, the crystal structure of the low-activity mutant showed that the N-terminal domain of the inhibited state is tightly held against the dimer-related interface thereby hindering acceptor access to the catalytic cleft. On the basis of these two structural observations, we developed a reversible redox regulatory feature in yeast GS by substituting cysteine residues for two highly conserved arginine residues. When oxidized, the cysteine mutant enzyme exhibits activity levels similar to the phosphorylated enzyme but cannot be activated by G-6-P. Upon reduction, the cysteine mutant enzyme regains normal activity levels and regulatory response to G-6-P activation.


Assuntos
Glicogênio Sintase/genética , Mutação , Saccharomyces cerevisiae/genética , Cristalização , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/farmacologia , Glicogênio/metabolismo , Glicogênio Sintase/química , Glicogênio Sintase/metabolismo , Cinética , Modelos Moleculares , Oxirredução , Fosforilação , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina Difosfato Glucose/metabolismo
20.
Physiol Rep ; 4(11)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27302990

RESUMO

Chronic activation of AMP-activated protein kinase (AMPK) increases glycogen content in skeletal muscle. Previously, we demonstrated that a mutation in the ryanodine receptor (RyR1(R615C)) blunts AMPK phosphorylation in longissimus muscle of pigs with a gain of function mutation in the AMPKγ3 subunit (AMPKγ3(R200Q)); this may decrease the glycogen storage capacity of AMPKγ3(R200Q) + RyR1(R615C) muscle. Therefore, our aim in this study was to utilize our pig model to understand how AMPKγ3(R200Q) and AMPK activation contribute to glycogen storage and metabolism in muscle. We selected and bred pigs in order to generate offspring with naturally occurring AMPKγ3(R200Q), RyR1(R615C), and AMPKγ3(R200Q) + RyR1(R615C) mutations, and also retained wild-type littermates (control). We assessed glycogen content and parameters of glycogen metabolism in longissimus muscle. Regardless of RyR1(R615C), AMPKγ3(R200Q) increased the glycogen content by approximately 70%. Activity of glycogen synthase (GS) without the allosteric activator glucose 6-phosphate (G6P) was decreased in AMPKγ3(R200Q) relative to all other genotypes, whereas both AMPKγ3(R200Q) and AMPKγ3(R200Q) + RyR1(R615C) muscle exhibited increased GS activity with G6P. Increased activity of GS with G6P was not associated with increased abundance of GS or hexokinase 2. However, AMPKγ3(R200Q) enhanced UDP-glucose pyrophosphorylase 2 (UGP2) expression approximately threefold. Although UGP2 is not generally considered a rate-limiting enzyme for glycogen synthesis, our model suggests that UGP2 plays an important role in increasing flux to glycogen synthase. Moreover, we have shown that the capacity for glycogen storage is more closely related to the AMPKγ3(R200Q) mutation than activity.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Mutação , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Feminino , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Masculino , Fosforilação , Sus scrofa , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA