Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Physiol ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409819

RESUMO

Acute hypoxia increases pulmonary arterial (PA) pressures, though its effect on right ventricular (RV) function is controversial. The objective of this study was to characterize exertional RV performance during acute hypoxia. Ten healthy participants (34 ± 10 years, 7 males) completed three visits: visits 1 and 2 included non-invasive normoxic (fraction of inspired oxygen ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) = 0.21) and isobaric hypoxic ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12) cardiopulmonary exercise testing (CPET) to determine normoxic/hypoxic maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Visit 3 involved invasive haemodynamic assessments where participants were randomized 1:1 to either Swan-Ganz or conductance catheterization to quantify RV performance via pressure-volume analysis. Arterial oxygen saturation was determined by blood gas analysis from radial arterial catheterization. During visit 3, participants completed invasive submaximal CPET testing at 50% normoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ and again at 50% hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12). Median (interquartile range) values for non-invasive V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ values during normoxic and hypoxic testing were 2.98 (2.43, 3.66) l/min and 1.84 (1.62, 2.25) l/min, respectively (P < 0.0001). Mean PA pressure increased significantly when transitioning from rest to submaximal exercise during normoxic and hypoxic conditions (P = 0.0014). Metrics of RV contractility including preload recruitable stroke work, dP/dtmax , and end-systolic pressure increased significantly during the transition from rest to exercise under normoxic and hypoxic conditions. Ventricular-arterial coupling was maintained during normoxic exercise at 50% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . During submaximal exercise at 50% of hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , ventricular-arterial coupling declined but remained within normal limits. In conclusion, resting and exertional RV functions are preserved in response to acute exposure to hypoxia at an F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12 and the associated increase in PA pressures. KEY POINTS: The healthy right ventricle augments contractility, lusitropy and energetics during periods of increased metabolic demand (e.g. exercise) in acute hypoxic conditions. During submaximal exercise, ventricular-arterial coupling decreases but remains within normal limits, ensuring that cardiac output and systemic perfusion are maintained. These data describe right ventricular physiological responses during submaximal exercise under conditions of acute hypoxia, such as occurs during exposure to high altitude and/or acute hypoxic respiratory failure.

2.
J Appl Physiol (1985) ; 135(4): 823-832, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589059

RESUMO

Acute altitude exposure lowers arterial oxygen content ([Formula: see text]) and cardiac output ([Formula: see text]) at peak exercise, whereas O2 extraction from blood to working muscles remains similar. Acclimatization normalizes [Formula: see text] but not peak [Formula: see text] nor peak oxygen consumption (V̇o2peak). To what extent acclimatization impacts muscle O2 extraction remains unresolved. Twenty-one sea-level residents performed an incremental cycling exercise to exhaustion near sea level (SL), in acute (ALT1) and chronic (ALT16) hypoxia (5,260 m). Arterial blood gases, gas exchange at the mouth and oxy- (O2Hb) and deoxyhemoglobin (HHb) of the vastus lateralis were recorded to assess arterial O2 content ([Formula: see text]), [Formula: see text], and V̇o2. The HHb-V̇o2 slope was taken as a surrogate for muscle O2 extraction. During moderate-intensity exercise, HHb-V̇o2 slope increased to a comparable extent at ALT1 (2.13 ± 0.94) and ALT16 (2.03 ± 0.88) compared with SL (1.27 ± 0.12), indicating increased O2 extraction. However, the HHb/[Formula: see text] ratio increased from SL to ALT1 and then tended to go back to SL values at ALT16. During high-intensity exercise, HHb-V̇o2 slope reached a break point beyond which it decreased at SL and ALT1, but not at ALT16. Increased muscle O2 extraction during submaximal exercise was associated with decreased [Formula: see text] in acute hypoxia. The significantly greater muscle O2 extraction during maximal exercise in chronic hypoxia is suggestive of an O2 reserve.NEW & NOTEWORTHY During incremental exercise muscle deoxyhemoglobin (HHb) and oxygen consumption (V̇o2) both increase linearly, and the slope of their relationship is an indirect index of local muscle O2 extraction. The latter was assessed at sea level, in acute and during chronic exposure to 5,260 m. The demonstrated presence of a muscle O2 extraction reserve during chronic exposure is coherent with previous studies indicating both limited muscle oxidative capacity and decrease in motor drive.


Assuntos
Hipóxia , Oxigênio , Humanos , Oxigênio/metabolismo , Hipóxia/metabolismo , Exercício Físico/fisiologia , Músculo Quadríceps/fisiologia , Aclimatação/fisiologia , Consumo de Oxigênio/fisiologia , Altitude , Músculo Esquelético/fisiologia
4.
Cell Metab ; 34(2): 299-316.e6, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108516

RESUMO

Due to lack of nuclei and de novo protein synthesis, post-translational modification (PTM) is imperative for erythrocytes to regulate oxygen (O2) delivery and combat tissue hypoxia. Here, we report that erythrocyte transglutminase-2 (eTG2)-mediated PTM is essential to trigger O2 delivery by promoting bisphosphoglycerate mutase proteostasis and the Rapoport-Luebering glycolytic shunt for adaptation to hypoxia, in healthy humans ascending to high altitude and in two distinct murine models of hypoxia. In a pathological hypoxia model with chronic kidney disease (CKD), eTG2 is critical to combat renal hypoxia-induced reduction of Slc22a5 transcription and OCNT2 protein levels via HIF-1α-PPARα signaling to maintain carnitine homeostasis. Carnitine supplementation is an effective and safe therapeutic approach to counteract hypertension and progression of CKD by enhancing erythrocyte O2 delivery. Altogether, we reveal eTG2 as an erythrocyte protein stabilizer orchestrating O2 delivery and tissue adaptive metabolic reprogramming and identify carnitine-based therapy to mitigate hypoxia and CKD progression.


Assuntos
Carnitina , Insuficiência Renal Crônica , Animais , Carnitina/metabolismo , Eritrócitos/metabolismo , Eritrócitos/patologia , Homeostase , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Oxigênio/metabolismo , Insuficiência Renal Crônica/patologia , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Transglutaminases/metabolismo
5.
Exp Physiol ; 107(2): 122-132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907608

RESUMO

NEW FINDINGS: What is the central question to this study? Is there a relationship between a patent foramen ovale and the development of acute mountain sickness and an exaggerated increase in pulmonary pressure in response to 7-10 h of normobaric hypoxia? What is the main finding and its importance? Patent foramen ovale presence did not increase susceptibility to acute mountain sickness or result in an exaggerated increase in pulmonary artery systolic pressure with normobaric hypoxia. This suggests hypobaric hypoxia is integral to the increased susceptibility to acute mountain sickness previously reported in those with patent foramen ovale, and patent foramen ovale presence alone does not contribute to the hypoxic pulmonary pressor response. ABSTRACT: Acute mountain sickness (AMS) develops following rapid ascent to altitude, but its exact causes remain unknown. A patent foramen ovale (PFO) is a right-to-left intracardiac shunt present in ∼30% of the population that has been shown to increase AMS susceptibility with high altitude hypoxia. Additionally, high altitude pulmonary oedema (HAPE) is a severe type of altitude illness characterized by an exaggerated pulmonary pressure response, and there is a greater prevalence of PFO in those with a history of HAPE. However, whether hypoxia per se is causing the increased incidence of AMS in those with a PFO and whether a PFO is associated with an exaggerated increase in pulmonary pressure in those without a history of HAPE is unknown. Participants (n = 36) matched for biological sex (18 female) and the presence or absence of a PFO (18 PFO+) were exposed to 7-10 h of normobaric hypoxia equivalent to 4755 m. Presence and severity of AMS was determined using the Lake Louise AMS scoring system. Pulmonary artery systolic pressure, cardiac output and total pulmonary resistance were measured using ultrasound. We found no significant association of PFO with incidence or severity of AMS and no association of PFO with arterial oxygen saturation. Additionally, there was no effect of a PFO on pulmonary pressure, cardiac output or total pulmonary resistance. These data suggest that hypobaric hypoxia is necessary for those with a PFO to have increased incidence of AMS and that presence of PFO is not associated with an exaggerated pulmonary pressor response.


Assuntos
Doença da Altitude , Forame Oval Patente , Hipertensão Pulmonar , Altitude , Feminino , Humanos , Hipóxia
6.
Exp Physiol ; 106(1): 117-125, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32363610

RESUMO

NEW FINDINGS: What is the central question of this study? Does the combination of methazolamide and theophylline reduce symptoms of acute mountain sickness (AMS) and improve aerobic performance in acute hypobaric hypoxia? What is the main finding and its importance? The oral combination of methazolamide (100 BID) and theophylline (300 BID) improved arterial oxygen saturation but did not reduce symptoms of AMS and impaired aerobic performance. We do not recommend this combination of drugs for prophylaxis against the acute negative effects of hypobaric hypoxia. ABSTRACT: A limited number of small studies have suggested that methazolamide and theophylline can independently reduce symptoms of acute mountain sickness (AMS) and, if taken together, can improve aerobic exercise performance in normobaric hypoxia. We performed a randomized, double-blind, placebo-controlled, cross-over study to determine if the combination of oral methazolamide and theophylline could provide prophylaxis against AMS and improve aerobic performance in hypobaric hypoxia (∼4875 m). Volunteers with histories of AMS were screened at low altitude (1650 m) and started combined methazolamide (100 mg BID) and theophylline (300 mg BID) treatment, or placebo, 72 h prior to decompression. Baseline AMS (Lake Louise Questionnaire), blood (haemoglobin, haematocrit), cognitive function, ventilatory and pulse oximetry ( SpO2 ) measures were assessed at low altitude and repeated between 4 and 10 h of exposure to hypobaric hypoxia (PB  = 425 mmHg). Aerobic exercise performance was assessed during a 12.5 km cycling time trial (TT) after 4 h of hypobaric hypoxia. Subjects repeated all experimental procedures after a 3-week washout period. Differences between drug and placebo trials were evaluated using repeated measures ANOVA (α = 0.05). The drugs improved resting SpO2 by ∼4% (P < 0.01), but did not affect the incidence or severity of AMS or cognitive function scores relative to placebo. Subjects' performance on the 12.5 km TT was ∼3% worse when taking the drugs (P < 0.01). The combination of methazolamide and theophylline in the prescribed dosages is not recommended for use at high altitude as it appears to have no measurable effect on AMS and can impair aerobic performance.


Assuntos
Doença da Altitude/tratamento farmacológico , Exercício Físico/fisiologia , Metazolamida/farmacologia , Teofilina/farmacologia , Doença Aguda , Adulto , Altitude , Doença da Altitude/fisiopatologia , Estudos Cross-Over , Método Duplo-Cego , Humanos , Hipóxia/fisiopatologia , Masculino , Saturação de Oxigênio/efeitos dos fármacos
7.
Am Surg ; 86(9): 1067-1072, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32779478

RESUMO

INTRODUCTION: Food insecurity (FI), defined as inadequate access to affordable and quality nutrition, has negative health consequences. FI and violence share similar root causes. The aim of this study was to determine the association of FI with gunshot injury (GSI) incidence. METHODS: We performed a retrospective review of all patients from 2012 to 2018 who sustained a GSI. Food access data was abstracted from the US Department of Agriculture. We analyzed the impact of FI, low food access (LA), and low food access with no vehicle (LANV) on the incidence of GSI using Poisson regression. We also compared high-risk zip codes for GSI, FI, LA, and LANV using geospatial analysis. RESULTS: There were 1700 patients in our cohort from 33 different zip codes. The median incidence of GSI per zip code was 142 (85-164); 5 zip codes comprised 50% of all GSI events. FI (incidence rate ratio [IRR] 4.05, 95% CI 3.98-4.13, P < .0001), LA (IRR 2.97, 95% CI 2.92-3.03. P < .0001), and LANV (IRR 2.58, 95% CI 2.55-2.62, P < .0001) were significant predictors of GSI incidence. The FI model was superior to the LA and LANV models. Geospatial analysis demonstrated that both FI (P < .0001) and LANV (P < .0001) were significantly associated with GSI, while LA was not (P > .05). CONCLUSION: FI is an independent risk factor for GSI incidence. Additionally, a majority of GSI events occur in a minority of communities. These data provide a novel opportunity for social services to guide future violence prevention strategies.


Assuntos
Abastecimento de Alimentos/estatística & dados numéricos , Violência com Arma de Fogo/estatística & dados numéricos , Ferimentos por Arma de Fogo/epidemiologia , Adulto , Feminino , Seguimentos , Humanos , Incidência , Masculino , Estudos Retrospectivos , Fatores de Risco , Estados Unidos/epidemiologia , Ferimentos por Arma de Fogo/prevenção & controle , Adulto Jovem
9.
Jt Comm J Qual Patient Saf ; 46(4): 185-191, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31899154

RESUMO

BACKGROUND: Patients with traumatic brain injury (TBI) are at an increased risk of developing complications from venous thromboembolisms (VTEs [blood clots]). Benchmarking by the American College of Surgeons Trauma Quality Improvement Program identified suboptimal use of prophylactic anticoagulation in patients with TBI. We hypothesized that institutional implementation of an anticoagulation protocol would improve clinical outcomes in such patients. METHODS: A new prophylactic anticoagulation protocol that incorporated education, weekly audits, and real-time adherence feedback was implemented in July 2015. The trauma registry identified patients with TBI before (PRE) and after (POST) implementation. Multivariable regression analysis with risk adjustment was used to compare use of prophylactic anticoagulation, VTE events, and mortality. RESULTS: A total of 681 patients with TBI (368 PRE, 313 POST) were identified. After implementation of the VTE protocol, more patients received anticoagulation (PRE: 39.4%, POST: 80.5%, p < 0.001), time to initiation was shorter (PRE: 140 hours, POST: 59 hours, p < 0.001), and there were fewer VTE events (PRE: 19 [5.2%], POST: 7 [2.2%], p = 0.047). Multivariable analysis showed that POST patients were more likely to receive anticoagulation (odds ratio [OR] = 10.8, 95% confidence interval [CI] = 6.9-16.7, p < 0.001) and less likely to develop VTE (OR = 0.33, 95% CI = 0.1-1.0, p = 0.05). CONCLUSION: Benchmarking can assist institutions to identity potential clinically relevant areas for quality improvement in real time. Combining education and multifaceted protocol implementation can help organizations to better focus limited quality resources and counteract barriers that have hindered adoption of best practices.


Assuntos
Lesões Encefálicas Traumáticas , Tromboembolia Venosa , Anticoagulantes/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Humanos , Melhoria de Qualidade , Tromboembolia Venosa/prevenção & controle
10.
Front Physiol ; 10: 1505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920710

RESUMO

INTRODUCTION: Baroreflex sensitivity (BRS) is essential to ensure rapid adjustment to variations in blood pressure (BP). Spontaneous baroreflex function can be assessed using continuous recordings of blood pressure. The goal of this study was to compare four methods for BRS quantification [the sequence, Bernardi's (BER), frequency and transfer function methods] to identify the most consistent method across an extreme range of conditions: rest and exercise, in normoxia, hypoxia, hypocapnia, and hypercapnia. METHODS: Using intra-radial artery BP in young healthy participants, BRS was calculated and compared using the four methods in normoxia, acute and chronic hypoxia (terrestrial altitude of 5,260 m) in hypocapnia (hyperventilation), hypercapnia (rebreathing) and during ramp exercise to exhaustion. RESULTS: The sequence and BER methods for BRS estimation showed good agreement during the resting and exercise protocols, whilst the ultra- and very-low frequency bands of the frequency and transfer function methods were more discrepant. Removing respiratory frequency from the blood pressure traces affected primarily the sequence and BER methods and occasionally the frequency and transfer function methods. DISCUSSION/CONCLUSION: The sequence and BER methods contained more respiratory related information than the frequency and transfer function methods, indicating that the former two methods predominantly rely on respiratory effects of BRS. BER method is recommended because it is the easiest to compute and even though it tends to overestimate BRS compared to the sequence method, it is consistent with the other methods, whilst its interquartile range is the smallest.

11.
Front Physiol ; 9: 767, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977210

RESUMO

Introduction: Baroreflex sensitivity (BRS) is essential to ensure rapid adjustment to variations in blood pressure (BP). Little is known concerning the adaptive responses of BRS during acclimatization to high altitude at rest and during exercise. Methods: Twenty-one healthy sea-level residents were tested near sea level (SL, 130 m), the 1st (ALT1) and 16th day (ALT16) at 5,260 m using radial artery catheterization. BRS was calculated using the sequence method (direct interpretation of causal link between BP and heartrate). At rest, subjects breathed a hyperoxic mixture (250 mmHg O2, end tidal) to isolate the preponderance of CO2 chemoreceptors. End-tidal CO2 varied from 20 to 50 mmHg to assess peripheral chemoreflex. Rebreathing provoked incremental increase in CO2, increasing BP to assess baroreflex. During incremental cycling exercise to exhaustion, subjects breathed room air. Results: Resting BRS decreased in ALT1 which was exacerbated in ALT16. This decrease in ALT1 was reversible upon additional inspired CO2, but not in ALT16. BRS decrease during exercise was greater and occurred at lower workloads in ALT1 compared to SL. At ALT16, this decrease returned toward SL values. Discussion/Conclusion: This study is the first to report attenuated BRS in acute hypoxia, exacerbated in chronic hypoxia. In ALT1, hypocapnia triggered BRS reduction whilst in ALT16 resetting of chemoreceptor triggered BRS reduction. The exercise BRS resetting was impaired in ALT1 but normalized in ALT16. These BRS decreases indicate decreased control of BP and may explain deteriorations of cardiovascular status during exposure to high altitude.

12.
J Biol Chem ; 293(18): 6659-6671, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29540485

RESUMO

Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress.


Assuntos
Aclimatação , Doença da Altitude/metabolismo , Doença da Altitude/fisiopatologia , Altitude , Metabolismo Energético/fisiologia , Metaboloma , Músculo Esquelético/metabolismo , Proteômica , Aminoácidos/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Ácidos Graxos/metabolismo , Feminino , Glicólise , Voluntários Saudáveis , Humanos , Masculino , Mitocôndrias Musculares/metabolismo , Proteínas Musculares/metabolismo , Oxirredução , Via de Pentose Fosfato , Fosforilação , Proteólise , Nucleotídeos de Purina/metabolismo , Distribuição Aleatória , Estresse Fisiológico , Adulto Jovem
13.
High Alt Med Biol ; 19(1): 4-6, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29583031

RESUMO

Roach, Robert C., Peter H. Hackett, Oswald Oelz, Peter Bärtsch, Andrew M. Luks, Martin J. MacInnis, J. Kenneth Baillie, and The Lake Louise AMS Score Consensus Committee. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 19:1-4, 2018.- The Lake Louise Acute Mountain Sickness (AMS) scoring system has been a useful research tool since first published in 1991. Recent studies have shown that disturbed sleep at altitude, one of the five symptoms scored for AMS, is more likely due to altitude hypoxia per se, and is not closely related to AMS. To address this issue, and also to evaluate the Lake Louise AMS score in light of decades of experience, experts in high altitude research undertook to revise the score. We here present an international consensus statement resulting from online discussions and meetings at the International Society of Mountain Medicine World Congress in Bolzano, Italy, in May 2014 and at the International Hypoxia Symposium in Lake Louise, Canada, in February 2015. The consensus group has revised the score to eliminate disturbed sleep as a questionnaire item, and has updated instructions for use of the score.


Assuntos
Doença da Altitude/diagnóstico , Doença da Altitude/fisiopatologia , Índice de Gravidade de Doença , Consenso , Humanos , Inquéritos e Questionários
14.
Am Surg ; 84(1): 20-27, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428017

RESUMO

The incidence of thoracolumbar spine fractures in blunt trauma is 4 to 5 per cent. These fractures may lead to neurologic injury, chronic back pain, and disability. Most studies from United States trauma centers focus on neurologic sequelae and/or compare treatment modalities. However, most patients with spine fractures do not have a neurologic deficit. Our primary objective was to determine the long-term outcome of traumatic thoracolumbar spine fractures, specifically addressing quality of life, chronic pain, and employment using a validated patient outcome survey. A chart review of 138 adult blunt trauma patients who sustained a thoracolumbar spine fracture and were admitted to our Level I trauma center from 2008 to 2013 was performed. A phone interview based on the Short-Form 12®, a general health survey, was then conducted. Of the 134 patients who met the inclusion criteria, 46 (34%) completed the survey. The average Short-Form 12® scores were 51.0 for the physical health component score and 52.9 for the mental health component score. These did not differ significantly from the national norm. Furthermore, 83 per cent (38) of the survey respondents returned to work full-time at the same level as before their injury. Majority of the patients (76%) said they did not have pain two to seven years after injury. Despite a commonly held belief that back injury leads to chronic pain and disability, after sustaining a thoracic or lumbar fracture, patients are generally able to return to work and have a comparable quality of life to the general population. This knowledge may be useful in counseling patients regarding expectations for recovery from trauma.


Assuntos
Tempo de Internação , Vértebras Lombares/lesões , Qualidade de Vida , Fraturas da Coluna Vertebral/terapia , Traumatismos Torácicos/terapia , Vértebras Torácicas/lesões , Ferimentos não Penetrantes/terapia , Adolescente , Adulto , Dor Crônica/etiologia , Emprego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Fraturas da Coluna Vertebral/etiologia , Inquéritos e Questionários , Traumatismos Torácicos/complicações , Centros de Traumatologia , Índices de Gravidade do Trauma , Resultado do Tratamento , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/etiologia
15.
J Appl Physiol (1985) ; 124(5): 1363-1376, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357511

RESUMO

Blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA) occurs in healthy humans at rest and during exercise when breathing hypoxic gas mixtures at sea level and may be a source of right-to-left shunt. However, at high altitudes, QIPAVA is reduced compared with sea level, as detected using transthoracic saline contrast echocardiography (TTSCE). It remains unknown whether the reduction in QIPAVA (i.e., lower bubble scores) at high altitude is due to a reduction in bubble stability resulting from the lower barometric pressure (PB) or represents an actual reduction in QIPAVA. To this end, QIPAVA, pulmonary artery systolic pressure (PASP), cardiac output (QT), and the alveolar-to-arterial oxygen difference (AaDO2) were assessed at rest and during exercise (70-190 W) in the field (5,260 m) and in the laboratory (1,668 m) during four conditions: normobaric normoxia (NN; [Formula: see text] = 121 mmHg, PB = 625 mmHg; n = 8), normobaric hypoxia (NH; [Formula: see text] = 76 mmHg, PB = 625 mmHg; n = 7), hypobaric normoxia (HN; [Formula: see text] = 121 mmHg, PB = 410 mmHg; n = 8), and hypobaric hypoxia (HH; [Formula: see text] = 75 mmHg, PB = 410 mmHg; n = 7). We hypothesized QIPAVA would be reduced during exercise in isooxic hypobaria compared with normobaria and that the AaDO2 would be reduced in isooxic hypobaria compared with normobaria. Bubble scores were greater in normobaric conditions, but the AaDO2 was similar in both isooxic hypobaria and normobaria. Total pulmonary resistance (PASP/QT) was elevated in HN and HH. Using mathematical modeling, we found no effect of hypobaria on bubble dissolution time within the pulmonary transit times under consideration (<5 s). Consequently, our data suggest an effect of hypobaria alone on pulmonary blood flow. NEW & NOTEWORTHY Blood flow through intrapulmonary arteriovenous anastomoses, detected by transthoracic saline contrast echocardiography, was reduced during exercise in acute hypobaria compared with normobaria, independent of oxygen tension, whereas pulmonary gas exchange efficiency was unaffected. Modeling the effect(s) of reduced air density on contrast bubble lifetime did not result in a significantly reduced contrast stability. Interestingly, total pulmonary resistance was increased by hypobaria, independent of oxygen tension, suggesting that pulmonary blood flow may be changed by hypobaria.

16.
High Alt Med Biol ; 19(2): 99-108, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29161114

RESUMO

Reno, Elaine, Talia L. Brown, Marian E. Betz, Michael H. Allen, Lilian Hoffecker, Jeremy Reitinger, Robert Roach, and Benjamin Honigman. Suicide and high altitude: an integrative review. High Alt Med Biol 19:99-108, 2018. INTRODUCTION: Suicide rates are greater at high altitudes, and multiple mechanisms have been suggested for this relationship, including hypoxia, differences in population density, characteristics of suicide victims, and firearms ownership and access. To better understand these potential mechanisms, studies evaluating the associations between high altitude and suicide were examined. METHODS: A literature review of published studies on high altitude and suicide was conducted in Medline, Embase, Web of Science, the Cochrane Database of Systematic Reviews, and the Cochrane CENTRAL database. We extracted and analyzed all studies that met the inclusion criteria, excluding foreign language studies and letters. Most of the measurements and results were synthesized using modified Letts' criteria. RESULTS: Searches using an extensive list of keywords returned 470 articles, but only 6 met the inclusion criteria. The studies' samples ranged in size from 8871 to 596,704, while studies which did not document sample size reported suicide rates. In five of the studies selected, individuals living at high altitudes were at greater risk of suicide. Four studies used aggregated data at a county or state level to analyze variables, such as age, gender, race, socioeconomic factors, and firearms access. All the studies found that high altitude was independently associated with suicide. One study found that many individual characteristics of those who committed suicide were different at high altitudes than low altitude, including a lack of access or barriers to mental healthcare. Depression exacerbated by hypoxia was hypothesized as a possible biologic mechanism in three studies. CONCLUSION: These research studies published since 2009 support an association between high altitude and suicide rates at the state or county level, but do not provide sufficient data to estimate the effect of high altitude on an individuals' suicide risk. Although the impact of hypoxia on mood and depression has been hypothesized to be a contributing cause, many other individual factors likely play more important roles.


Assuntos
Doença da Altitude/psicologia , Altitude , Depressão/psicologia , Suicídio/estatística & dados numéricos , Feminino , Humanos , Masculino
17.
Haematologica ; 103(2): 361-372, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29079593

RESUMO

Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1-7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and - preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates.


Assuntos
Eritrócitos/metabolismo , Hipoxantina/sangue , Hipóxia , Purinas/metabolismo , Animais , Preservação de Sangue/métodos , Desaminação , Transfusão de Eritrócitos , Humanos , Camundongos , Camundongos Endogâmicos C57BL
19.
J Appl Physiol (1985) ; 123(4): 951-956, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572494

RESUMO

Erythrocytes are vital to human adaptation under hypoxic conditions because of their abundance in number and irreplaceable function of delivering oxygen (O2). However, although multiple large-scale altitude studies investigating the overall coordination of the human body for hypoxia adaptation have been conducted, detailed research with a focus on erythrocytes was missing due to lack of proper techniques. The recently maturing metabolomics profiling technology appears to be the answer to this limitation. Metabolomics profiling provides unbiased high-throughput screening data that reveal the overall metabolic status of erythrocytes. Recent studies have exploited this new technology and provided novel insight into erythrocyte physiology and pathology. In particular, a series of studies focusing on erythrocyte purinergic signaling have reported that adenosine signaling, coupled with 5' AMP-activated protein kinase (AMPK) and the production of erythrocyte-enriched bioactive signaling lipid sphingosine 1-phosphate, regulate erythrocyte glucose metabolism for more O2 delivery. Moreover, an adenosine-dependent "erythrocyte hypoxic memory" was discovered that provides an explanation for fast acclimation upon re-ascent. These findings not only shed new light on our understanding of erythrocyte function and hypoxia adaptation, but also offer a myriad of novel therapeutic possibilities to counteract various hypoxic conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Adenosina/metabolismo , Eritrócitos/metabolismo , Hipóxia/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aclimatação , Animais , Humanos , Oxigênio/metabolismo
20.
Nat Commun ; 8: 14108, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169986

RESUMO

Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation.


Assuntos
Aclimatação/fisiologia , Adenosina/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Eritrócitos/fisiologia , Hipóxia/fisiopatologia , Receptor A2B de Adenosina/metabolismo , 5'-Nucleotidase/sangue , 5'-Nucleotidase/metabolismo , Adenosina/sangue , Adulto , Altitude , Doença da Altitude/sangue , Doença da Altitude/fisiopatologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/sangue , Transportador Equilibrativo 1 de Nucleosídeo/genética , Feminino , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/metabolismo , Voluntários Saudáveis , Humanos , Hipóxia/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Fosforilação , Receptor A2B de Adenosina/genética , Transdução de Sinais/fisiologia , Ubiquitinação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA