Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 346: 118884, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37729834

RESUMO

Land degradation directly affects around 25% of land globally, undermining progress on most of the UN Sustainable Development Goals (SDG), particularly target 15.3. To assess land degradation, SDG indicator 15.3.1 combines sub-indicators of productivity, soil carbon and land cover. Over 100 countries have set Land Degradation Neutrality (LDN) targets. Here, we demonstrate application of the indicator for a well-established agricultural landscape using the case study of Great Britain. We explore detection of degradation in such landscapes by: 1) transparently evaluating land cover transitions; 2) comparing assessments using global and national data; 3) identifying misleading trends; and 4) including extra sub-indicators for additional forms of degradation. Our results demonstrate significant impacts on the indicator both from the land cover transition evaluation and choice or availability of data. Critically, we identify a misleading improvement trend due to a trade-off between improvement detected by the productivity sub-indicator, and 30-year soil carbon loss trends in croplands (11% from 1978 to 2007). This carbon loss trend would not be identified without additional data from Countryside Survey (CS). Thus, without incorporating field survey data we risk overlooking the degradation of regulating and supporting ecosystem services (linked to soil carbon), in favour of signals from improving provisioning services (productivity sub-indicator). Relative importance of these services will vary between socioeconomic contexts. Including extra sub-indicators for erosion or critical load exceedance, as additional forms of degradation, produced a switch from net area improving (9%) to net area degraded (58%). CS data also identified additional degradation for soil health, including 44% arable soils exceeding bulk density thresholds and 35% of CS squares exceeding contamination thresholds for metals.


Assuntos
Agricultura , Ecossistema , Solo , Desenvolvimento Sustentável , Carbono , Conservação dos Recursos Naturais
2.
Front Plant Sci ; 11: 591886, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362820

RESUMO

We present an image processing method for accurately segmenting crop plots from Unmanned Aerial System imagery (UAS). The use of UAS for agricultural monitoring has increased significantly, emerging as a potentially cost effective alternative to manned aerial surveys and field work for remotely assessing crop state. The accurate segmentation of small densely-packed crop plots from UAS imagery over extensive areas is an important component of this monitoring activity in order to assess the state of different varieties and treatment regimes in a timely and cost-effective manner. Despite its importance, a reliable crop plot segmentation approach eludes us, with best efforts being relying on significant manual parameterization. The segmentation method developed uses a combination of edge detection and Hough line detection to establish the boundaries of each plot with pixel/point based metrics calculated for each plot segment. We show that with limited parameterization, segmentation of crop plots consistently over 89% accuracy are possible on different crop types and conditions. This is comparable to results obtained from rice paddies where the plant material in plots is sharply contrasted with the water, and represents a considerable improvement over previous methods for typical dry land crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA