Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Physiol Rep ; 12(4): e15944, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38366054

RESUMO

Maximal exercise capacity is reduced at altitude or during hypoxia at sea level. It has been suggested that this might reflect increased right ventricular afterload due to hypoxic pulmonary vasoconstriction. We have shown previously that the pulmonary vascular sensitivity to hypoxia is enhanced by sustained isocapnic hypoxia, and inhibited by intravenous iron. In this study, we tested the hypothesis that elevated pulmonary artery pressure contributes to exercise limitation during acute hypoxia. Twelve healthy volunteers performed incremental exercise tests to exhaustion breathing 12% oxygen, before and after sustained (8-h) isocapnic hypoxia at sea level. Intravenous iron sucrose (n = 6) or saline placebo (n = 6) was administered immediately before the sustained hypoxia. In the placebo group, there was a substantial (12.6 ± 1.5 mmHg) rise in systolic pulmonary artery pressure (SPAP) during sustained hypoxia, but no associated fall in maximal exercise capacity breathing 12% oxygen. In the iron group, the rise in SPAP during sustained hypoxia was markedly reduced (3.4 ± 1.0 mmHg). There was a small rise in maximal exercise capacity following sustained hypoxia within the iron group, but no overall effect of iron, compared with saline. These results do not support the hypothesis that elevated SPAP inhibits maximal exercise capacity during acute hypoxia in healthy volunteers.


Assuntos
Oxigênio , Vasoconstrição , Humanos , Tolerância ao Exercício , Voluntários Saudáveis , Artéria Pulmonar , Hipóxia , Altitude , Ferro/uso terapêutico
5.
J Appl Physiol (1985) ; 135(1): 205-216, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262105

RESUMO

This study explored the use of computed cardiopulmonography (CCP) to assess lung function in early-stage cystic fibrosis (CF). CCP has two components. The first is a particularly accurate technique for measuring gas exchange. The second is a computational cardiopulmonary model where patient-specific parameters can be estimated from the measurements of gas exchange. Twenty-five participants (14 healthy controls, 11 early-stage CF) were studied with CCP. They were also studied with a standard clinical protocol to measure the lung clearance index (LCI2.5). Ventilation inhomogeneity, as quantified through CCP parameter σlnCl, was significantly greater (P < 0.005) in CF than in controls, and anatomical deadspace relative to predicted functional residual capacity (DS/FRCpred) was significantly more variable (P < 0.002). Participant-specific parameters were used with the CCP model to calculate idealized values for LCI2.5 (iLCI2.5) where extrapulmonary influences on the LCI2.5, such as breathing pattern, had all been standardized. Both LCI2.5 and iLCI2.5 distinguished clearly between CF and control participants. LCI2.5 values were mostly higher than iLCI2.5 values in a manner dependent on the participant's respiratory rate (r = 0.46, P < 0.05). The within-participant reproducibility for iLCI2.5 appeared better than for LCI2.5, but this did not reach statistical significance (F ratio = 2.2, P = 0.056). Both a sensitivity analysis on iLCI2.5 and a regression analysis on LCI2.5 revealed that these depended primarily on an interactive term between CCP parameters of the form σlnCL*(DS/FRC). In conclusion, the LCI2.5 (or iLCI2.5) probably reflects an amalgam of different underlying lung changes in early-stage CF that would require a multiparameter approach, such as potentially CCP, to resolve.NEW & NOTEWORTHY Computed cardiopulmonography is a new technique comprising a highly accurate sensor for measuring respiratory gas exchange coupled with a cardiopulmonary model that is used to identify a set of patient-specific characteristics of the lung. Here, we show that this technique can improve on a standard clinical approach for lung function testing in cystic fibrosis. Most particularly, an approach incorporating multiple model parameters can potentially separate different aspects of pathological change in this disease.


Assuntos
Fibrose Cística , Humanos , Reprodutibilidade dos Testes , Testes de Função Respiratória/métodos , Pulmão , Respiração
6.
Front Physiol ; 13: 1032126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388110

RESUMO

Early diagnosis and disease phenotyping in COPD are currently limited by the use of spirometry, which may remain normal despite significant small-airways disease and which may not fully capture a patient's underlying pathophysiology. In this study we explored the use of a new non-invasive technique that assesses gas-exchange inhomogeneity in patients with COPD of varying disease severity (according to GOLD Stage), compared with age-matched healthy controls. The technique, which combines highly accurate measurement of respiratory gas exchange using a bespoke molecular flow sensor and a mechanistic mathematical model of the lung, provides new indices of lung function: the parameters σCL, σCd, and σVD represent the standard deviations of distributions for alveolar compliance, anatomical deadspace and vascular conductance relative to lung volume, respectively. It also provides parameter estimates for total anatomical deadspace and functional residual capacity (FRC). We demonstrate that these parameters are robust and sensitive, and that they can distinguish between healthy individuals and those with mild-moderate COPD (stage 1-2), as well as distinguish between mild-moderate COPD (stage 1-2) and more severe (stage 3-4) COPD. In particular, σCL, a measure of unevenness in lung inflation/deflation, could represent a more sensitive non-invasive marker of early or mild COPD. In addition, by providing a multi-dimensional assessment of lung physiology, this technique may also give insight into the underlying pathophysiological phenotype for individual patients. These preliminary results warrant further investigation in larger clinical research studies, including interventional trials.

7.
J Appl Physiol (1985) ; 133(5): 1175-1191, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173325

RESUMO

The longer-term effects of COVID-19 on lung physiology remain poorly understood. Here, a new technique, computed cardiopulmonography (CCP), was used to study two COVID-19 cohorts (MCOVID and C-MORE-LP) at both ∼6 and ∼12 mo after infection. CCP is comprised of two components. The first is collection of highly precise, highly time-resolved measurements of gas exchange with a purpose-built molecular flow sensor based around laser absorption spectroscopy. The second component is estimation of physiological parameters by fitting a cardiopulmonary model to the data set. The measurement protocol involved 7 min of breathing air followed by 5 min of breathing pure O2. One hundred seventy-eight participants were studied, with 97 returning for a repeat assessment. One hundred twenty-six arterial blood gas samples were drawn from MCOVID participants. For participants who had required intensive care and/or invasive mechanical ventilation, there was a significant increase in anatomical dead space of ∼30 mL and a significant increase in alveolar-to-arterial Po2 gradient of ∼0.9 kPa relative to control participants. Those who had been hospitalized had reductions in functional residual capacity of ∼15%. Irrespectively of COVID-19 severity, participants who had had COVID-19 demonstrated a modest increase in ventilation inhomogeneity, broadly equivalent to that associated with 15 yr of aging. This study illustrates the capability of CCP to study aspects of lung function not so easily addressed through standard clinical lung function tests. However, without measurements before infection, it is not possible to conclude whether the findings relate to the effects of COVID-19 or whether they constitute risk factors for more serious disease.NEW & NOTEWORTHY This study used a novel technique, computed cardiopulmonography, to study the lungs of patients who have had COVID-19. Depending on severity of infection, there were increases in anatomical dead space, reductions in absolute lung volumes, and increases in ventilation inhomogeneity broadly equivalent to those associated with 15 yr of aging. However, without measurements taken before infection, it is unclear whether the changes result from COVID-19 infection or are risk factors for more severe disease.


Assuntos
COVID-19 , Humanos , Testes de Função Respiratória , Respiração Artificial , Pulmão , Respiração
8.
PLoS One ; 17(8): e0273214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040974

RESUMO

Busana et al. (doi.org/10.1152/japplphysiol.00871.2020) published 5 patients with COVID-19 in whom the fraction of non-aerated lung tissue had been quantified by computed tomography. They assumed that shunt flow fraction was proportional to the non-aerated lung fraction, and, by randomly generating 106 different bimodal distributions for the ventilation-perfusion ([Formula: see text]) ratios in the lung, specified as sets of paired values {[Formula: see text]}, sought to identify as solutions those that generated the observed arterial partial pressures of CO2 and O2 (PaCO2 and PaO2). Our study sought to develop a direct method of calculation to replace the approach of randomly generating different distributions, and so provide more accurate solutions that were within the measurement error of the blood-gas data. For the one patient in whom Busana et al. did not find solutions, we demonstrated that the assumed shunt flow fraction led to a non-shunt blood flow that was too low to support the required gas exchange. For the other four patients, we found precise solutions (prediction error < 1x10-3 mmHg for both PaCO2 and PaO2), with distributions qualitatively similar to those of Busana et al. These distributions were extremely wide and unlikely to be physically realisable, because they predict the maintenance of very large concentration gradients in regions of the lung where convection is slow. We consider that these wide distributions arise because the assumed value for shunt flow is too low in these patients, and we discuss possible reasons why the assumption relating to shunt flow fraction may break down in COVID-19 pneumonia.


Assuntos
COVID-19 , Humanos , Pulmão , Oxigênio , Perfusão , Troca Gasosa Pulmonar/fisiologia , Relação Ventilação-Perfusão/fisiologia
9.
J Cardiothorac Surg ; 17(1): 157, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710500

RESUMO

BACKGROUND: Iron deficiency has deleterious effects in patients with cardiopulmonary disease, independent of anemia. Low ferritin has been associated with increased mortality in patients undergoing cardiac surgery, but modern indices of iron deficiency need to be explored in this population. METHODS: We conducted a retrospective single-centre observational study of 250 adults in a UK academic tertiary hospital undergoing median sternotomy for non-emergent isolated aortic valve replacement. We characterised preoperative iron status using measurement of both plasma ferritin and soluble transferrin receptor (sTfR), and examined associations with clinical outcomes. RESULTS: Measurement of plasma sTfR gave a prevalence of iron deficiency of 22%. Patients with non-anemic iron deficiency had clinically significant prolongation of total hospital stay (mean increase 2.2 days; 95% CI: 0.5-3.9; P = 0.011) and stay within the cardiac intensive care unit (mean increase 1.3 days; 95% CI: 0.1-2.5; P = 0.039). There were no deaths. Defining iron deficiency as a plasma ferritin < 100 µg/L identified 60% of patients as iron deficient and did not predict length of stay. No significant associations with transfusion requirements were evident using either definition of iron deficiency. CONCLUSIONS: These findings indicate that when defined using sTfR rather than ferritin, non-anemic iron deficiency predicts prolonged hospitalisation following surgical aortic valve replacement. Further studies are required to clarify the role of contemporary laboratory indices in the identification of preoperative iron deficiency in patients undergoing cardiac surgery. An interventional study of intravenous iron targeted at preoperative non-anemic iron deficiency is warranted.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Adulto , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/etiologia , Valva Aórtica/cirurgia , Ferritinas , Humanos , Ferro , Tempo de Internação , Receptores da Transferrina , Estudos Retrospectivos
10.
Radiology ; 305(3): 709-717, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35608443

RESUMO

Background Post-COVID-19 condition encompasses symptoms following COVID-19 infection that linger at least 4 weeks after the end of active infection. Symptoms are wide ranging, but breathlessness is common. Purpose To determine if the previously described lung abnormalities seen on hyperpolarized (HP) pulmonary xenon 129 (129Xe) MRI scans in participants with post-COVID-19 condition who were hospitalized are also present in participants with post-COVID-19 condition who were not hospitalized. Materials and Methods In this prospective study, nonhospitalized participants with post-COVID-19 condition (NHLC) and posthospitalized participants with post-COVID-19 condition (PHC) were enrolled from June 2020 to August 2021. Participants underwent chest CT, HP 129Xe MRI, pulmonary function testing, and the 1-minute sit-to-stand test and completed breathlessness questionnaires. Control subjects underwent HP 129Xe MRI only. CT scans were analyzed for post-COVID-19 interstitial lung disease severity using a previously published scoring system and full-scale airway network (FAN) modeling. Analysis used group and pairwise comparisons between participants and control subjects and correlations between participant clinical and imaging data. Results A total of 11 NHLC participants (four men, seven women; mean age, 44 years ± 11 [SD]; 95% CI: 37, 50) and 12 PHC participants (10 men, two women; mean age, 58 years ±10; 95% CI: 52, 64) were included, with a significant difference in age between groups (P = .05). Mean time from infection was 287 days ± 79 (95% CI: 240, 334) and 143 days ± 72 (95% CI: 105, 190) in NHLC and PHC participants, respectively. NHLC and PHC participants had normal or near normal CT scans (mean, 0.3/25 ± 0.6 [95% CI: 0, 0.63] and 7/25 ± 5 [95% CI: 4, 10], respectively). Gas transfer (Dlco) was different between NHLC and PHC participants (mean Dlco, 76% ± 8 [95% CI: 73, 83] vs 86% ± 8 [95% CI: 80, 91], respectively; P = .04), but there was no evidence of other differences in lung function. Mean red blood cell-to-tissue plasma ratio was different between volunteers (mean, 0.45 ± 0.07; 95% CI: 0.43, 0.47]) and PHC participants (mean, 0.31 ± 0.10; 95% CI: 0.24, 0.37; P = .02) and between volunteers and NHLC participants (mean, 0.37 ± 0.10; 95% CI: 0.31, 0.44; P = .03) but not between NHLC and PHC participants (P = .26). FAN results did not correlate with Dlco) or HP 129Xe MRI results. Conclusion Nonhospitalized participants with post-COVID-19 condition (NHLC) and posthospitalized participants with post-COVID-19 condition (PHC) showed hyperpolarized pulmonary xenon 129 MRI and red blood cell-to-tissue plasma abnormalities, with NHLC participants demonstrating lower gas transfer than PHC participants despite having normal CT findings. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Parraga and Matheson in this issue.


Assuntos
COVID-19 , Isótopos de Xenônio , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , COVID-19/diagnóstico por imagem , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Dispneia , Síndrome de COVID-19 Pós-Aguda
12.
Sci Rep ; 12(1): 998, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046429

RESUMO

Iron deficiency impairs skeletal muscle metabolism. The underlying mechanisms are incompletely characterised, but animal and human experiments suggest the involvement of signalling pathways co-dependent upon oxygen and iron availability, including the pathway associated with hypoxia-inducible factor (HIF). We performed a prospective, case-control, clinical physiology study to explore the effects of iron deficiency on human metabolism, using exercise as a stressor. Thirteen iron-deficient (ID) individuals and thirteen iron-replete (IR) control participants each underwent 31P-magnetic resonance spectroscopy of exercising calf muscle to investigate differences in oxidative phosphorylation, followed by whole-body cardiopulmonary exercise testing. Thereafter, individuals were given an intravenous (IV) infusion, randomised to either iron or saline, and the assessments repeated ~ 1 week later. Neither baseline iron status nor IV iron significantly influenced high-energy phosphate metabolism. During submaximal cardiopulmonary exercise, the rate of decline in blood lactate concentration was diminished in the ID group (P = 0.005). Intravenous iron corrected this abnormality. Furthermore, IV iron increased lactate threshold during maximal cardiopulmonary exercise by ~ 10%, regardless of baseline iron status. These findings demonstrate abnormal whole-body energy metabolism in iron-deficient but otherwise healthy humans. Iron deficiency promotes a more glycolytic phenotype without having a detectable effect on mitochondrial bioenergetics.


Assuntos
Metabolismo Energético/fisiologia , Deficiências de Ferro/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Administração Intravenosa , Adulto , Estudos de Casos e Controles , Exercício Físico/fisiologia , Feminino , Humanos , Ferro/administração & dosagem , Ácido Láctico/sangue , Masculino , Estudos Prospectivos
13.
Br J Anaesth ; 128(2): 272-282, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34872717

RESUMO

BACKGROUND: Anaemia is common and associated with poor outcomes in survivors of critical illness. However, the optimal treatment strategy is unclear. METHODS: We conducted a multicentre, feasibility RCT to compare either a single dose of ferric carboxymaltose 1000 mg i.v. or usual care in patients being discharged from the ICU with moderate or severe anaemia (haemoglobin ≤100 g L-1). We collected data on feasibility (recruitment, randomisation, follow-up), biological efficacy, and clinical outcomes. RESULTS: Ninety-eight participants were randomly allocated (49 in each arm). The overall recruitment rate was 34% with 6.5 participants recruited on average per month. Forty-seven of 49 (96%) participants received the intervention. Patient-reported outcome measures were available for 79/93 (85%) survivors at 90 days. Intravenous iron resulted in a higher mean (standard deviation [sd]) haemoglobin at 28 days (119.8 [13.3] vs 106.7 [14.9] g L-1) and 90 days (130.5 [15.1] vs 122.7 [17.3] g L-1), adjusted mean difference (10.98 g L-1; 95% confidence interval [CI], 4.96-17.01; P<0.001) over 90 days after randomisation. Infection rates were similar in both groups. Hospital readmissions at 90 days post-ICU discharge were lower in the i.v. iron group (7/40 vs 15/39; risk ratio=0.46; 95% CI, 0.21-0.99; P=0.037). The median (inter-quartile range) post-ICU hospital stay was shorter in the i.v. iron group but did not reach statistical significance (5.0 [3.0-13.0] vs 9.0 [5.0-16.0] days, P=0.15). CONCLUSION: A large, multicentre RCT of i.v. iron to treat anaemia in survivors of critical illness appears feasible and is necessary to determine the effects on patient-centred outcomes. CLINICAL TRIAL REGISTRATION: ISRCTN13721808 (www.isrctn.com).


Assuntos
Anemia/tratamento farmacológico , Compostos Férricos/administração & dosagem , Hematínicos/administração & dosagem , Maltose/análogos & derivados , Administração Intravenosa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cuidados Críticos , Estudos de Viabilidade , Feminino , Seguimentos , Hemoglobinas/análise , Humanos , Tempo de Internação , Masculino , Maltose/administração & dosagem , Pessoa de Meia-Idade , Readmissão do Paciente/estatística & dados numéricos , Medidas de Resultados Relatados pelo Paciente , Adulto Jovem
14.
Aerosp Med Hum Perform ; 92(8): 633-641, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503616

RESUMO

AbstractBACKGROUND: Members of the public will soon be taking commercial suborbital spaceflights with significant Gx (chest-to-back) acceleration potentially reaching up to 6 Gx. Pulmonary physiology is gravity-dependent and is likely to be affected, which may have clinical implications for medically susceptible individuals.METHODS: During 2-min centrifuge exposures ranging up to 6 Gx, 11 healthy subjects were studied using advanced respiratory techniques. These sustained exposures were intended to allow characterization of the underlying pulmonary response and did not replicate actual suborbital G profiles. Regional distribution of ventilation in the lungs was determined using electrical impedance tomography. Neural respiratory drive (from diaphragm electromyography) and work of breathing (from transdiaphragmatic pressures) were obtained via nasoesophageal catheters. Arterial blood gases were measured in a subset of subjects. Measurements were conducted while breathing air and breathing 15 oxygen to simulate anticipated cabin pressurization conditions.RESULTS: Acceleration caused hypoxemia that worsened with increasing magnitude and duration of Gx. Minimum arterial oxygen saturation at 6 Gx was 86 1 breathing air and 79 1 breathing 15 oxygen. With increasing Gx the alveolar-arterial (A-a) oxygen gradient widened progressively and the relative distribution of ventilation reversed from posterior to anterior lung regions with substantial gas-trapping anteriorly. Severe breathlessness accompanied large progressive increases in work of breathing and neural respiratory drive.DISCUSSION: Sustained high-G acceleration at magnitudes relevant to suborbital flight profoundly affects respiratory physiology. These effects may become clinically important in the most medically susceptible passengers, in whom the potential role of centrifuge-based preflight evaluation requires further investigation.Pollock RD, Jolley CJ, Abid N, Couper JH, Estrada-Petrocelli L, Hodkinson PD, Leonhardt S, Mago-Elliott S, Menden T, Rafferty G, Richmond G, Robbins PA, Ritchie GAD, Segal MJ, Stevenson AT, Tank HD, Smith TG. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp Med Hum Perform. 2021; 92(7):633641.


Assuntos
Medicina Aeroespacial , Voo Espacial , Aceleração , Centrifugação , Gravitação , Humanos
16.
Kidney Int ; 100(3): 559-569, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991530

RESUMO

The hepcidin/ferroportin axis controls systemic iron homeostasis by regulating iron acquisition from the duodenum and reticuloendothelial system, respective sites of iron absorption and recycling. Ferroportin is also abundant in the kidney, where it has been implicated in tubular iron reabsorption. However, it remains unknown whether endogenous hepcidin regulates ferroportin-mediated iron reabsorption under physiological conditions, and whether such regulation is important for kidney and/or systemic iron homeostasis. To address these questions, we generated a novel mouse model with an inducible kidney-tubule specific knock-in of fpnC326Y, which encodes a hepcidin-resistant ferroportin termed FPNC326Y. Under conditions of normal iron availability, female mice harboring this allele had consistently decreased kidney iron but only transiently increased systemic iron indices. Under conditions of excess iron availability, male and female mice harboring this allele had milder kidney iron overload, but greater systemic iron overload relative to controls. Additionally, despite comparable systemic iron overload, kidney iron overload occurred in wild type mice fed an iron-loaded diet but not in hemochromatosis mice harboring a ubiquitous knock-in of fpnC326Y. Thus, our study demonstrates that endogenous hepcidin controls ferroportin-mediated tubular iron reabsorption under physiological conditions. It also shows that such control is important for both kidney and systemic iron homeostasis in the context of iron overload.


Assuntos
Hepcidinas , Sobrecarga de Ferro , Animais , Proteínas de Transporte de Cátions , Feminino , Hepcidinas/genética , Ferro , Rim , Masculino , Camundongos
18.
ERJ Open Res ; 7(2)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898618

RESUMO

BACKGROUND: Multiple-breath washout techniques are increasingly used to assess lung function. The principal statistic obtained is the lung clearance index (LCI), but values obtained for LCI using the nitrogen (N2)-washout technique are higher than those obtained using an exogenous tracer gas such as sulfur hexafluoride. This study explored whether the pure oxygen (O2) used for the N2 washout could underlie these higher values. METHODS: A model of a homogenous, reciprocally ventilated acinus was constructed. Perfusion was kept constant, and ventilation adjusted by varying the swept volume during the breathing cycle. The blood supplying the acinus had a standard mixed-venous composition. Carbon dioxide and O2 exchange between the blood and acinar gas proceeded to equilibrium. The model was initialised with either air or air plus tracer gas as the inspirate. Washouts were conducted with pure O2 for the N2 washout or with air for the tracer gas washout. RESULTS: At normal ventilation/perfusion (V'/Q') ratios, the rate of washout of N2 and exogenous tracer gas was almost indistinguishable. At low V'/Q', the N2 washout lagged the tracer gas washout. At very low V'/Q', N2 became trapped in the acinus. Under low V'/Q' conditions, breathing pure O2 introduced a marked asymmetry between the inspiratory and expiratory gas flow rates that was not present when breathing air. DISCUSSION: The use of pure O2 to washout N2 increases O2 uptake in low V'/Q' units. This generates a background gas flow into the acinus that opposes flow out of the acinus during expiration, and so delays the washout of N2.

19.
Sci Rep ; 11(1): 5252, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664377

RESUMO

Respiratory approaches to determining cardiac output in humans are securely rooted in mass balance and therefore potentially highly accurate. To address existing limitations in the gas analysis, we developed an in-airway analyser based on laser absorption spectroscopy to provide analyses every 10 ms. The technique for estimating cardiac output requires both a relatively soluble and insoluble tracer gas, and we employed acetylene and methane for these, respectively. A multipass cell was used to provide sufficient measurement sensitivity to enable analysis directly within the main gas stream, thus avoiding errors introduced by sidestream gas analysis. To assess performance, measurements of cardiac output were made during both rest and exercise on five successive days in each of six volunteers. The measurements were extremely repeatable (coefficient of variation ~ 7%). This new measurement technology provides a stable foundation against which the algorithm to calculate cardiac output can be further developed.


Assuntos
Débito Cardíaco/fisiologia , Respiração , Sistema Respiratório/diagnóstico por imagem , Análise Espectral/métodos , Exercício Físico/fisiologia , Humanos , Lasers , Consumo de Oxigênio/fisiologia , Descanso , Tórax/diagnóstico por imagem , Tórax/fisiologia
20.
Ann Am Thorac Soc ; 18(6): 981-988, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33735594

RESUMO

Rationale: Iron deficiency, in the absence of anemia, is common in patients with idiopathic and heritable pulmonary arterial hypertension (PAH) and is associated with a worse clinical outcome. Oral iron absorption may be impeded by elevated circulating hepcidin concentrations. The safety and benefit of parenteral iron replacement in this patient population is unclear. Objectives: To evaluate the safety and efficacy of parenteral iron replacement in PAH. Methods: In two randomized, double-blind, placebo-controlled 12-week crossover studies, 39 patients in Europe received a single infusion of ferric carboxymaltose (Ferinject) (1,000 mg or 15 mg/kg if weight <66.7 kg) or saline as placebo, and 17 patients in China received iron dextran (Cosmofer) (20 mg iron/kg body weight) or saline placebo. All patients had idiopathic or heritable PAH and iron deficiency at entry as defined by a serum ferritin <37 µg/L or iron <10.3 µmol/L or transferrin saturations <16.4%. Results: Both iron treatments were well tolerated and improved iron status. Analyzed separately and combined, there was no effect on any measure of exercise capacity (using cardiopulmonary exercise testing or 6-minute walk test) or cardiopulmonary hemodynamics, as assessed by right heart catheterization, cardiac magnetic resonance, or plasma NT-proBNP (N-terminal-pro hormone brain natriuretic peptide) at 12 weeks. Conclusions: Iron repletion by administration of a slow-release iron preparation as a single infusion to patients with PAH with iron deficiency without overt anemia was well tolerated but provided no significant clinical benefit at 12 weeks. Clinical trial registered with ClinicalTrials.gov (NCT01447628).


Assuntos
Anemia Ferropriva , Hipertensão Arterial Pulmonar , Anemia Ferropriva/tratamento farmacológico , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Hipertensão Pulmonar Primária Familiar , Humanos , Ferro , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA