RESUMO
There is an increasing interest in the impact of feed on the fish gut microbiome. Most of the studies are based on sequencing the bacterial housekeeping gene 16S rRNA from extracted total DNA, including resident and non-resident live bacteria as well as dead bacteria. It has not been a common practice to include the feed as control, although it contains various nutritious ingredients that microorganisms can use before or after feed preparation. Thus, study designs using digesta as a proxy for the intestinal microbiome raise the concern that composition of the gut microbiome might be biased by carry-over of microbial DNA from the feed itself. Here we report analysis of 15 feeds and representative intestinal digesta of Atlantic salmon (Salmo salar) from five independent case studies. This allowed us to identify "feed microbiomes" that were microbially diverse and shared taxa with digesta microbiomes. Digesta-specific microbiomes were identified, though they were mainly enriched by a few taxa, such as Mycoplasma and Ruminococcaceae. Overall, findings are consistent with a model wherein gut microbial profiles are to a different degree influenced by bacterial DNA present in the feed itself through a "feed microbiome" carry-over effect.
RESUMO
Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities. There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action "Marine metagenomics - towards user centric services".
RESUMO
BACKGROUND: Iron is an essential micronutrient for all living organisms, and virulence and sequestration of iron in pathogenic bacteria are believed to be correlated. As a defence mechanism, potential hosts therefore keep the level of free iron inside the body to a minimum. In general, iron metabolism is well studied for some bacteria (mostly human or animal pathogens). However, this area is still under-investigated for a number of important bacterial pathogens. Aliivibrio salmonicida is a fish pathogen, and previous studies of this bacterium have shown that production of siderophores is temperature regulated and dependent on low iron conditions. In this work we studied the immediate changes in transcription in response to a sudden decrease in iron levels in cultures of A. salmonicida. In addition, we compared our results to studies performed with Vibrio cholerae and Vibrio vulnificus using a pan-genomic approach. RESULTS: Microarray technology was used to monitor global changes in transcriptional levels. Cultures of A. salmonicida were grown to mid log phase before the iron chelator 2,2'-dipyridyl was added and samples were collected after 15 minutes of growth. Using our statistical cut-off values, we retrieved thirty-two differentially expressed genes where the most up-regulated genes belong to an operon encoding proteins responsible for producing the siderophore bisucaberin. A subsequent pan-transcriptome analysis revealed that nine of the up-regulated genes from our dataset were also up-regulated in datasets from similar experiments using V. cholerae and V. vulnificus, thus indicating that these genes are involved in a shared strategy to mitigate low iron conditions. CONCLUSIONS: The present work highlights the effect of iron limitation on the gene regulatory network of the fish pathogen A. salmonicida, and provides insights into common and unique strategies of Vibrionaceae species to mitigate low iron conditions.