Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1929, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029847

RESUMO

Domestication involves adapting animals to the human-controlled environment. Genetic changes occurring during the domestication process may manifest themselves in phenotypes that render domesticated animals maladaptive for life in the wild. Domesticated Atlantic salmon frequently interbreed with wild conspecifics, and their offspring display reduced survival in the wild. However, the mechanism(s) contributing to their lower survival in the wild remains a subject of conjecture. Here, we document higher susceptibility to predation by brown trout in fast-growing domesticated salmon, as compared to their slow-growing wild conspecifics, demonstrating that directional selection for increased growth comes at a cost of decreased survival when under the risk of predation, as predicted by the growth/predation risk trade-off. Despite earlier documentation of altered risk-taking behavior, this study demonstrates for the first time that domestication of Atlantic salmon has lead to increased predation susceptibility, and that this consitutes a mechanism underpinning the observed survial differences in the wild.


Assuntos
Animais Domésticos/fisiologia , Domesticação , Salmo salar/fisiologia , Animais , Animais Domésticos/crescimento & desenvolvimento , Fenótipo , Salmo salar/crescimento & desenvolvimento , Truta/crescimento & desenvolvimento , Truta/fisiologia
2.
Ecol Evol ; 9(1): 212-222, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680108

RESUMO

Escaped farmed Atlantic salmon interbreed with wild Atlantic salmon, leaving offspring that often have lower success in nature than pure wild salmon. On top of this, presence of farmed salmon descendants can impair production of wild-type recruits. We hypothesize that both these effects connect with farmed salmon having acquired higher standard metabolic rates (SMR, the energetic cost of self-maintenance) during domestication. Fitness-related advantages of phenotypic traits associated with both high SMR and farmed salmon (e.g., social dominance) depend on environmental conditions, such as food availability. We hypothesize that farmed offspring have an advantage at high food availability due to, for example, dominance behavior but suffer increased risks of starvation when food is scarce because this behavior is energy-demanding. To test these hypotheses, we first compare embryo SMR of pure farmed, farmed-wild hybrids and pure wild offspring. Next, we test early-life performance (in terms of survival and growth) of hybrids relative to that of their wild half-siblings, as well as their competitive abilities, in semi-natural conditions of high and low food availability. Finally, we test how SMR affects early-life performance at high and low food availability. We find inconclusive support for the hypothesis that domestication has induced increased SMR. Further, wild and hybrid juveniles had similar survival and growth in the semi-natural streams. Yet, the presence of hybrids led to decreased survival of their wild half-siblings. Contrary to our hypothesis about context-dependency, these effects were not modified by food availability. However, wild juveniles with high SMR had decreased survival when food was scarce, but there was no such effect at high food availability. This study provides further proof that farmed salmon introgression may compromise the viability of wild salmon populations. We cannot, however, conclude that this is connected to alterations in the metabolic phenotype of farmed salmon.

3.
Nat Ecol Evol ; 1(5): 124, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28812692

RESUMO

Interbreeding between domesticated and wild animals occurs in several species. This gene flow has long been anticipated to induce genetic changes in life-history traits of wild populations, thereby influencing population dynamics and viability. Here, we show that individuals with high levels of introgression (domesticated ancestry) have altered age and size at maturation in 62 wild Atlantic salmon Salmo salar populations, including seven ancestral populations to breeding lines of the domesticated salmon. This study documents widespread changes to life-history traits in wild animal populations following gene flow from selectively bred, domesticated conspecifics. The continued high abundance of escaped, domesticated Atlantic salmon thus threatens wild Atlantic salmon populations by inducing genetic changes in fitness-related traits. Our results represent key evidence and a timely warning concerning the potential ecological impacts of the globally increasing use of domesticated animals.

4.
Behav Ecol ; 27(5): 1280-1287, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656083

RESUMO

In species where parental care occurs primarily via the provisioning of eggs, older females tend to produce larger offspring that have better fitness prospects. Remarkably however, a relationship between age of mother and fitness of offspring has also been reported independently of effects on offspring size suggesting that there may be other factors at play. Here, using experimental matings between wild Atlantic salmon that differed in their age at sexual maturation, we demonstrate distinct size-independent variation in the behavior of their offspring that was related to the maturation age of the mother (but not the father). We found that when juvenile salmon were competing for feeding territories, offspring of early-maturing mothers were more aggressive than those of late-maturing mothers, but were out-competed for food by them. This is the first demonstration of a link between natural variation in parental age at maturation and variation in offspring behavior.

5.
J Anim Ecol ; 83(4): 791-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24245740

RESUMO

Maintenance of metabolic rate (MR, the energy cost of self-maintenance) is linked to behavioural traits and fitness and varies substantially within populations. Despite having received much attention, the causes and consequences of this variation remain obscure. Theoretically, such within-population variation in fitness-related traits can be maintained by environmental heterogeneity in selection patterns, but for MR, this has rarely been tested in nature. Here, we experimentally test whether the relationship between MR and performance can vary spatially by assessing survival, growth rate and movement of Atlantic salmon (Salmo salar L.) juveniles from 10 family groups differing in MR (measured as egg metabolism) that were stocked in parallel across 10 tributaries of a single watershed. The relationship between MR and relative survival and growth rate varied significantly among tributaries. Specifically, the effect of MR ranged from negative to positive for relative survival, whereas it was negative for growth rate. The association between MR and movement was positive and did not vary significantly among tributaries. These results are consistent with a fitness cost of traits associated with behavioural dominance that varies across relatively small spatial scales (within a single watershed). More generally, our results support the hypothesis that spatial heterogeneity in environmental conditions contributes to maintain within-population variation in fitness-related traits, such as MR.


Assuntos
Metabolismo Basal , Longevidade , Movimento , Salmo salar/fisiologia , Animais , Geografia , Óvulo/fisiologia , Salmo salar/crescimento & desenvolvimento , Escócia
6.
Oecologia ; 165(4): 959-69, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20924766

RESUMO

By dispersing from localized aggregations of recruits, individuals may obtain energetic benefits due to reduced experienced density. However, this will depend on the spatial scale over which individuals compete. Here, we quantify this scale for juvenile Atlantic salmon (Salmo salar) following emergence and dispersal from nests. A single nest was placed in each of ten replicate streams during winter, and information on the individual positions (±1 m) and the body sizes of the resulting young-of-the-year (YOY) juveniles was obtained by sampling during the summer. In six of the ten streams, model comparisons suggested that individual body size was most closely related to the density within a mean distance of 11 m (range 2-26 m). A link between body size and density on such a restricted spatial scale suggests that dispersal from nests confers energetic benefits that can counterbalance any survival costs. For the four remaining streams, which had a high abundance of trout and older salmon cohorts, no single spatial scale could best describe the relation between YOY density and body size. Energetic benefits of dispersal associated with reduced local density therefore appear to depend on the abundance of competing cohorts or species, which have spatial distributions that are less predictable in terms of distance from nests. Thus, given a trade-off between costs and benefits associated with dispersal, and variation in benefits among environments, we predict an evolving and/or phenotypically plastic growth rate threshold which determines when an individual decides to disperse from areas of high local density.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Salmo salar/crescimento & desenvolvimento , Animais , Tamanho Corporal , Modelos Biológicos , Densidade Demográfica , Salmo salar/fisiologia , Estações do Ano , Análise de Sobrevida
7.
J Anim Ecol ; 80(2): 365-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21155770

RESUMO

1. Timing of birth/hatching may have strong effects on offspring fitness. Breeding time is generally considered to have evolved to match offspring arrival with optimal seasonal environmental conditions, though this is rarely tested experimentally and factors shaping the relations between timing of birth and reproductive success are often poorly understood. 2. By manipulating incubation temperature of Atlantic salmon embryos, and hence controlling for maternal and genetic effects, we obtained offspring emerging from nests prior to (accelerated), during and after (decelerated) normal emergence times, and accordingly experienced widely different seasonal environmental conditions at emergence (stream temperature range 4-16 °C). The accelerated group emerged at temperatures that are generally considered to be highly sub-optimal for growth and likely imposes strong constraints on feeding and activity, and during a peak in water discharge which is expected to negatively influence habitat availability. 3. In the wild, overall mortality during the period after emergence was 79%, and was significantly affected by both release density and emergence timing. Accelerated offspring, which emerged earliest and experienced the harshest environmental conditions, had both highest survival and largest final body size. The effect was particularly strong at the high density release site, where survival of accelerated offspring was significantly higher than both the normal and decelerated groups. 4. In more controlled semi-natural environments, all developmental groups were able to perform well, but accelerated offspring had a relatively better performance than the later emerging offspring when density was high. Furthermore, the relative performance of the different groups was not sensitive to water discharge regimes (temporally stable vs. fluctuating). 5. These results suggest that the performance of offspring in relation to seasonal timing of emergence is highly affected by competitive interactions in Atlantic salmon. Although a match between phenology and optimal seasonal environmental conditions may be highly important for organisms depending on specific resources that are only available during a limited period of the season, such resources may be available in variable amounts year around for many organisms. For these, offspring success may to a larger degree be shaped by the timing of their hatching/birth relative to each other, and particularly so under high population densities.


Assuntos
Reprodução , Salmão/fisiologia , Animais , Tamanho Corporal , Meio Ambiente , Feminino , Masculino , Noruega , Densidade Demográfica , Salmão/crescimento & desenvolvimento , Estações do Ano , Temperatura
8.
Evol Appl ; 1(2): 239-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-25567629

RESUMO

Theory suggests an important role for population density in shaping adaptive landscapes through density-dependent selection. Here, we identify five methodological approaches for studying such selection, review the existing empirical evidence for it, and ask whether current declines in abundance can be expected to trigger evolutionary responses in salmonid fishes. Across taxa we find substantial amounts of evidence for population density influencing the location of adaptive peaks for a range of traits, and, in the presence of frequency dependence, changing the shape of selection (stabilizing versus disruptive). For salmonids, biological and theoretical considerations suggest that the optimal value of a number of traits associated with juvenile competitive ability (e.g. egg size, timing of emergence from nests, dominance ability), may depend on population density. For adults, more direct experimental and comparative evidence suggest that secondary sexual traits can be subject to density-dependent selection. There is also evidence that density affects the frequency-dependent selection likely responsible for the expression of alternative male reproductive phenotypes in salmon. Less is known however about the role of density in maintaining genetic variation among juveniles. Further efforts are required to elucidate the indirect evolutionary effects of declining population abundances, both in salmonids and in other anthropogenically challenged organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA