Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Chem Biol ; 15(8): 2289-2298, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32633482

RESUMO

Heart muscle contraction is regulated by calcium binding to cardiac troponin C. This induces troponin I (cTnI) switch region binding to the regulatory domain of troponin C (cNTnC), pulling the cTnI inhibitory region off actin and triggering muscle contraction. Small molecules targeting this cNTnC-cTnI interface have potential in the treatment of heart disease. Most of these have an aromatic core which binds to the hydrophobic core of cNTnC, and a polar and often charged 'tail'. The calmodulin antagonist W7 is unique in that it acts as calcium desensitizer. W7 binds to the interface of cNTnC and cTnI switch region and weakens cTnI binding, possibly by electrostatic repulsion between the positively charged terminal amino group of W7 and the positively charged RRVR144-147 region of cTnI. To evaluate the role of electrostatics, we synthesized A7, where the amino group of W7 was replaced with a carboxyl group. We determined the high-resolution solution NMR structure of A7 bound to a cNTnC-cTnI chimera. The structure shows that A7 does not change the overall conformation of the cNTnC-cTnI interface, and the naphthalene ring of A7 sits in the same hydrophobic pocket as that of W7, but the charged tail takes a different route to the surface of the complex, especially with respect to the position of the switch region of cTnI. We measured the affinities of A7 for cNTnC and the cNTnC-cTnI complex and that of the cTnI switch peptide for the cNTnC-A7 complex. We also compared the binding of W7 and A7 for two cNTnC-cTnI chimeras, differing in the presence or absence of the RRVR region of cTnI. A7 decreased the binding affinity of cTnI to cNTnC substantially less than W7 and bound more tightly to the more positively charged chimera. We tested the effects of W7 and A7 on the force-calcium relation of demembranated rat right ventricular trabeculae and demonstrated that A7 has a much weaker desensitization effect than W7. We also synthesized A6, which has one less methylene group on the hydrocarbon chain than A7. A6 did not affect binding of cTnI switch peptide nor change the calcium sensitivity of ventricular trabeculae. These results suggest that the negative inotropic effect of W7 may result from a combination of electrostatic repulsion and steric hindrance with cTnI.


Assuntos
Coração/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Eletricidade Estática , Animais , Cálcio/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Ligação Proteica , Ratos , Bibliotecas de Moléculas Pequenas/farmacologia , Troponina C/química , Troponina C/metabolismo , Troponina I/química , Troponina I/metabolismo
2.
J Biomol NMR ; 74(1): 1-7, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31912345

RESUMO

When planning a fluorine labeling strategy for 19F solid state NMR (ssNMR) studies of the structure and/or mobility of fluorine labeled compounds in situ in an oriented biological system, it is important to characterize the NMR properties of the label. This manuscript focuses on the characterization of a selection of aromatic fluorine compounds in dimyristoylphosphatidylcholine bilayers using 19F ssNMR from the standpoint of determining the optimum arrangement of fluorine nuclei on a pendant aromatic ring before incorporation into more complex biological systems.


Assuntos
Flúor/química , Marcação por Isótopo , Ressonância Magnética Nuclear Biomolecular , Compostos de Bifenilo/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química
3.
ACS Med Chem Lett ; 10(6): 1007-1012, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32426091

RESUMO

We have investigated the mechanism and reactivity of covalent bond formation between cysteine-84 of the regulatory domain of cardiac troponin C and compounds containing a nitrile moiety similar to the calcium sensitizer levosimendan. The results of modifications to the levosimendan framework ranged from a large increase in covalent bond formation to complete inactivity. We present the biological activity of one of the most potent compounds. Limitations, including compound solubility and degradation at acidic pH, have prevented thorough investigation of the potential of these compounds. Our studies reveal the efficacious nature of the malononitrile moiety in targeting cNTnC and its potential in future cardiotonic drug design.

4.
Biochemistry ; 57(15): 2256-2265, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29558109

RESUMO

The development of calcium sensitizers for the treatment of systolic heart failure presents difficulties, including judging the optimal efficacy and the specificity to target cardiac muscle. The thin filament is an attractive target because cardiac troponin C (cTnC) is the site of calcium binding and the trigger for subsequent contraction. One widely studied calcium sensitizer is levosimendan. We have recently shown that when a covalent cTnC-levosimendan analogue is exchanged into cardiac muscle cells, they become constitutively active, demonstrating the potency of a covalent complex. We have also demonstrated that levosimendan reacts in vitro to form a reversible covalent thioimidate bond specifically with cysteine 84, unique to cTnC. In this study, we use mass spectrometry to show that the in vitro mechanism of action of levosimendan is consistent with an allosteric, reversible covalent inhibitor; to determine whether the presence of the cTnI switch peptide or changes in either Ca2+ concentration or pH modify the reaction kinetics; and to determine whether the reaction can occur with cTnC in situ in cardiac myofibrils. Using the derived kinetic rate constants, we predict the degree of covalently modified cTnC in vivo under the conditions studied. We observe that covalent bond formation would be highest under the acidotic conditions resulting from ischemia and discuss whether the predicted level could be sufficient to have therapeutic value. Irrespective of the in vivo mechanism of action for levosimendan, our results provide a rationale and basis for the development of reversible covalent drugs to target the failing heart.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Hidrazonas , Isquemia Miocárdica , Miofibrilas , Piridazinas , Troponina C , Animais , Cisteína/metabolismo , Humanos , Hidrazonas/química , Hidrazonas/farmacocinética , Hidrazonas/farmacologia , Concentração de Íons de Hidrogênio , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miofibrilas/química , Miofibrilas/metabolismo , Miofibrilas/ultraestrutura , Piridazinas/química , Piridazinas/farmacocinética , Piridazinas/farmacologia , Simendana , Suínos , Troponina C/química , Troponina C/metabolismo
5.
Cardiovasc Res ; 114(10): 1350-1359, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566148

RESUMO

Aims: Doxorubicin (DOX) is among the most effective chemotherapies used in paediatric cancer patients. However, the clinical utility of DOX is offset by its well-known cardiotoxicity, which often does not appear until later in life. Since hypertension significantly increases the risk of late-onset heart failure in childhood cancer survivors, we investigated whether juvenile DOX exposure impairs the ability to adapt to angiotensin II (Ang II)-induced hypertension later in life and tested a treatment that could prevent this. Methods and results: Five-week-old male mice were administered a low dose of DOX (4 mg/kg) or saline once a week for 3 weeks and then allowed to recover for 5 weeks. Following the 5-week recovery period, mice were infused with Ang II or saline for 2 weeks. In another cohort, mice were fed chow containing 0.4% resveratrol 1 week before, during, and 1 week after the DOX administrations. One week after the last DOX administration, p38 mitogen-activated protein kinase (MAPK) was activated in hearts of DOX-treated mice demonstrating molecular signs of cardiac stress; yet, there was no change in cardiac function between groups. However, DOX-treated mice failed to develop compensatory cardiac hypertrophy in response to Ang II-induced hypertension later in life. Of importance, mice receiving DOX with resveratrol co-administration displayed normalization in p38 MAPK activation in the heart and a restored capacity for cardiac hypertrophy in response to Ang II-induced hypertension. Conclusion: We have developed a juvenile mouse model of DOX-induced cardiotoxicity that displays no immediate overt physiological dysfunction; but, leads to an impaired ability of the heart to adapt to hypertension later in life. We also show that co-administration of resveratrol during DOX treatment was sufficient to normalize molecular markers of cardiotoxicity and restore the ability of the heart to undergo adaptive remodelling in response to hypertension later in life.


Assuntos
Angiotensina II , Doxorrubicina , Cardiopatias/prevenção & controle , Hipertensão/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Resveratrol/farmacologia , Adaptação Fisiológica , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiotoxicidade , Modelos Animais de Doenças , Ativação Enzimática , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 312(4): H842-H853, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159807

RESUMO

We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg-1·day-1) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients.NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms.


Assuntos
Antioxidantes/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Esforço Físico/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Metabolismo Energético/efeitos dos fármacos , Tolerância ao Exercício/efeitos dos fármacos , Fadiga/prevenção & controle , Glucose/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Condicionamento Físico Animal , Resveratrol , Volume Sistólico/efeitos dos fármacos
7.
Am J Physiol Heart Circ Physiol ; 312(3): H561-H570, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062414

RESUMO

Since left ventricular hypertrophy (LVH) increases the susceptibility for the development of other cardiac conditions, pharmacotherapy that mitigates pathological cardiac remodeling may prove to be beneficial in patients with LVH. Previous work has shown that the activation of the energy-sensing kinase AMP-activated protein kinase (AMPK) can inhibit some of the molecular mechanisms that are involved in LVH. Of interest, metformin activates AMPK through its inhibition of mitochondrial complex I in the electron transport chain and can prevent LVH induced by pressure overload. However, metformin has additional cellular effects unrelated to AMPK activation, raising questions about whether mitochondrial complex I inhibition is sufficient to reduce LVH. Herein, we characterize the cardiac effects of a novel compound (R118), which is a more potent complex I inhibitor than metformin and is thus used at a much lower concentration. We show that R118 activates AMPK in the cardiomyocyte, inhibits multiple signaling pathways involved in LVH, and prevents Gq protein-coupled receptor agonist-induced prohypertrophic signaling. We also show that in vivo administration of R118 prevents LVH in a mouse model of hypertension, suggesting that R118 can directly modulate the response of the cardiomyocyte to stress. Of importance, we also show that while R118 treatment prevents adaptive remodelling in response to elevated afterload, it does so without compromising systolic function, improves myocardial energetics, and prevents a decline in diastolic function in hypertensive mice. Taken together, our data suggest that inhibition of mitochondrial complex I may be worthy of future investigation for the treatment of LVH.NEW & NOTEWORTHY Inhibition of mitochondrial complex I by R118 reduces left ventricular hypertrophy (LVH) and improves myocardial energetics as well as diastolic function without compromising systolic function. Together, these effects demonstrate the therapeutic potential of complex I inhibitors in the treatment of LVH, even in the presence of persistent hypertension.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Hipertensão/complicações , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Angiotensina II , Animais , Pressão Sanguínea , Metabolismo Energético , Ativadores de Enzimas/farmacologia , Hipertensão/induzido quimicamente , Hipertrofia Ventricular Esquerda/induzido quimicamente , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Vasoconstritores
8.
Nat Commun ; 7: 13564, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976669

RESUMO

A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys.

9.
Biochemistry ; 55(43): 6032-6045, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27673371

RESUMO

The binding of Ca2+ to cardiac troponin C (cTnC) triggers contraction in heart muscle. In the diseased heart, the myocardium is often desensitized to Ca2+, which leads to impaired contractility. Therefore, compounds that sensitize cardiac muscle to Ca2+ (Ca2+-sensitizers) have therapeutic promise. The only Ca2+-sensitizer used regularly in clinical settings is levosimendan. While the primary target of levosimendan is thought to be cTnC, the molecular details of this interaction are not well understood. In this study, we used mass spectrometry, computational chemistry, and nuclear magnetic resonance spectroscopy to demonstrate that levosimendan reacts specifically with cysteine 84 of cTnC to form a reversible thioimidate bond. We also showed that levosimendan only reacts with the active, Ca2+-bound conformation of cTnC. Finally, we propose a structural model of levosimendan bound to cTnC, which suggests that the Ca2+-sensitizing function of levosimendan is due to stabilization of the Ca2+-bound conformation of cTnC.


Assuntos
Cálcio/metabolismo , Cardiotônicos/metabolismo , Hidrazonas/metabolismo , Miocárdio/metabolismo , Piridazinas/metabolismo , Troponina C/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ligação Proteica , Simendana
10.
ChemSusChem ; 9(17): 2358-64, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27535100

RESUMO

Alane (AlH3 ) is a unique energetic material that has not found a broad practical use for over 70 years because it is difficult to synthesize directly from its elements. Using density functional theory, we examine the defect-mediated formation of alane monomers on Al(111) in a two-step process: (1) dissociative adsorption of H2 and (2) alane formation, which are both endothermic on a clean surface. Only with Ti dopant to facilitate H2 dissociation and vacancies to provide Al adatoms, both processes become exothermic. In agreement, in situ scanning tunneling microscopy showed that during H2 exposure, alane monomers and clusters form primarily in the vicinity of Al vacancies and Ti atoms. Moreover, ball milling of the Al samples with Ti (providing necessary defects) showed a 10 % conversion of Al into AlH3 or closely related species at 344 bar H2 , indicating that the predicted pathway may lead to the direct synthesis of alane from elements at pressures much lower than the 10(4)  bar expected from bulk thermodynamics.


Assuntos
Compostos de Alumínio/química , Alumínio/química , Técnicas de Química Sintética/métodos , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
11.
J Mol Cell Cardiol ; 92: 174-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26853943

RESUMO

One approach to improve contraction in the failing heart is the administration of calcium (Ca(2+)) sensitizers. Although it is known that levosimendan and other sensitizers bind to troponin C (cTnC), their in vivo mechanism is not fully understood. Based on levosimendan, we designed a covalent Ca(2+) sensitizer (i9) that targets C84 of cTnC and exchanged this complex into cardiac muscle. The NMR structure of the covalent complex showed that i9 binds deep in the hydrophobic pocket of cTnC. Despite slightly reducing troponin I affinity, i9 enhanced the Ca(2+) sensitivity of cardiac muscle. We conclude that i9 enhances Ca(2+) sensitivity by stabilizing the open conformation of cTnC. These findings provide new insights into the in vivo mechanism of Ca(2+) sensitization and demonstrate that directly targeting cTnC has significant potential in cardiovascular therapy.


Assuntos
Fármacos Cardiovasculares/química , Insuficiência Cardíaca/tratamento farmacológico , Hidrazonas/química , Piridazinas/química , Troponina C/química , Animais , Cálcio/química , Cálcio/metabolismo , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/uso terapêutico , Insuficiência Cardíaca/patologia , Humanos , Hidrazonas/metabolismo , Hidrazonas/uso terapêutico , Contração Miocárdica/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Piridazinas/metabolismo , Piridazinas/uso terapêutico , Ratos , Simendana , Troponina C/metabolismo , Troponina I/química , Troponina I/metabolismo
12.
J Mol Cell Cardiol ; 87: 257-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26341255

RESUMO

Familial hypertrophic cardiomyopathy (FHC) is characterized by severe abnormal cardiac muscle growth. The traditional view of disease progression in FHC is that an increase in the Ca(2+)-sensitivity of cardiac muscle contraction ultimately leads to pathogenic myocardial remodeling, though recent studies suggest this may be an oversimplification. For example, FHC may be developed through altered signaling that prevents downstream regulation of contraction. The mutation L29Q, found in the Ca(2+)-binding regulatory protein in heart muscle, cardiac troponin C (cTnC), has been linked to cardiac hypertrophy. However, reports on the functional effects of this mutation are conflicting, and our goal was to combine in vitro and in situ structural and functional data to elucidate its mechanism of action. We used nuclear magnetic resonance and circular dichroism to solve the structure and characterize the backbone dynamics and stability of the regulatory domain of cTnC with the L29Q mutation. The overall structure and dynamics of cTnC were unperturbed, although a slight rearrangement of site 1, an increase in backbone flexibility, and a small decrease in protein stability were observed. The structure and function of cTnC was also assessed in demembranated ventricular trabeculae using fluorescence for in situ structure. L29Q reduced the cooperativity of the Ca(2+)-dependent structural change in cTnC in trabeculae under basal conditions and abolished the effect of force-generating myosin cross-bridges on this structural change. These effects could contribute to the pathogenesis of this mutation.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/genética , Miocárdio/metabolismo , Troponina C/química , Troponina C/genética , Animais , Cardiomiopatia Hipertrófica Familiar/metabolismo , Cardiomiopatia Hipertrófica Familiar/patologia , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Contração Miocárdica/genética , Miocárdio/patologia , Miosinas/genética , Miosinas/metabolismo , Fosforilação , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Troponina C/metabolismo
13.
Biochemistry ; 54(23): 3583-93, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25996354

RESUMO

Intracellular acidosis lowers the Ca²âº sensitivity of cardiac muscle, which results in decreased force generation, decreased cardiac output, and, eventually, heart failure. The A162H mutant of cardiac troponin I in the thin filament turns the heart acidosis-resistant. Physiological and structural studies have provided insights into the mechanism of protection by the A162H substitution; however, the effect of other native residues of cardiac troponin I is not fully understood. In this study, we determined the structure of the A162H mutant of the switch region of cardiac troponin I bound to the regulatory domain of troponin C at pH 6.1, and the dynamics as a function of pH, by NMR spectroscopy to evaluate the changes induced by protonation of A162H. The results indicate that A162H induces a transitory curved conformation on troponin I that promotes contraction, but it is countered by residue E164 to ensure proper relaxation. Our model explains the absence of diastolic impairment in the gain-of-function phenotype induced by the A162H substitution as well as the effects of a variety of mutants studied previously. The description of this mechanism underlines the fine quality of regulation on cardiac muscle contraction and anticipates pharmacological agents that induce modest changes in the contraction-relaxation equilibrium to produce marked effects in cardiac performance.


Assuntos
Modelos Moleculares , Proteínas Mutantes/química , Troponina C/química , Troponina I/química , Substituição de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Radioisótopos de Carbono , Ácido Glutâmico/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Radioisótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Troponina C/genética , Troponina C/metabolismo , Troponina I/genética , Troponina I/metabolismo
14.
Biochim Biophys Acta ; 1852(6): 1155-77, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25451966

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Despite advancements in diagnosis and treatment of cardiovascular disease, the incidence of cardiovascular disease is still rising. Therefore, new lines of medications are needed to treat the growing population of patients with cardiovascular disease. Although the majority of the existing pharmacotherapies for cardiovascular disease are synthesized molecules, natural compounds, such as resveratrol, are also being tested. Resveratrol is a non-flavonoid polyphenolic compound, which has several biological effects. Preclinical studies have provided convincing evidence that resveratrol has beneficial effects in animal models of hypertension, atherosclerosis, stroke, ischemic heart disease, arrhythmia, chemotherapy-induced cardiotoxicity, diabetic cardiomyopathy, and heart failure. Although not fully delineated, some of the beneficial cardiovascular effects of resveratrol are mediated through activation of silent information regulator 1 (SIRT1), AMP-activated protein kinase (AMPK), and endogenous anti-oxidant enzymes. In addition to these pathways, the anti-inflammatory, anti-platelet, insulin-sensitizing, and lipid-lowering properties of resveratrol contribute to its beneficial cardiovascular effects. Despite the promise of resveratrol as a treatment for numerous cardiovascular diseases, the clinical studies for resveratrol are still limited. In addition, several conflicting results from trials have been reported, which demonstrates the challenges that face the translation of the exciting preclinical findings to humans. Herein, we will review much of the preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular disease and provide information about the physiological and molecular signaling mechanisms involved. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Estilbenos/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Ensaios Clínicos como Assunto , Frequência Cardíaca/efeitos dos fármacos , Humanos , Resveratrol , Estilbenos/farmacologia , Vasodilatação/efeitos dos fármacos
15.
Arch Biochem Biophys ; 552-553: 40-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24333682

RESUMO

The calcium sensitivity of cardiac and skeletal muscle is reduced during cytosolic acidosis, and this inhibition is more pronounced in cardiac muscle. Replacing cardiac troponin I with skeletal troponin I reduces the pH sensitivity of cardiac muscle. This diminished pH sensitivity depends on a single amino acid difference in troponin I: an alanine in cardiac and a histidine in skeletal. Studies suggested that when this histidine is protonated, it forms an electrostatic interaction with glutamate 19 on the surface of cardiac troponin C. Structures of the skeletal and cardiac troponin complexes show very different conformations for the region of troponin I surrounding this residue. In this study, we determined the structure of skeletal troponin I bound to cardiac troponin C. Skeletal troponin I is found to bind to cardiac troponin C with histidine 130 in close proximity to glutamate 19. This conformation is homologous to the crystal structure of the skeletal troponin complex; but different than in the cardiac complex. We show that an A162H variant of cardiac troponin I adopts a conformation similar to the skeletal structure. The implications of these structural differences in the context of cardiac muscle regulation are discussed.


Assuntos
Troponina C/metabolismo , Troponina I/química , Troponina I/metabolismo , Alanina/química , Sequência de Aminoácidos , Histidina/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Troponina C/química
16.
Cardiovasc Res ; 97(3): 481-9, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23183586

RESUMO

AIMS: Ischaemic heart disease is the leading cause of mortality worldwide. Acidosis is the main mediator of ischaemia and shielding against it might be possible. In this study, we characterize the nature of interaction between the regulatory domain of cardiac troponin C and the A162H-substituted cardiac troponin I (cTnI) that confers protection against acidosis. METHODS AND RESULTS: We used nuclear magnetic resonance spectroscopy to study the interaction of the Ca(2+)-saturated N-domain of cardiac troponin C with the switch region of cTnI containing the A162H substitution under normal and acidic conditions. Our results show that H162 increases the affinity of TnI for troponin C at pH 7 and this affinity is further enhanced at pH 6. To investigate the nature of the interactions responsible for such improvement, we determined the acid dissociation constants of the glutamate residues in troponin C. The results show that E15 and E19 exhibit deviations in their acid dissociation constant (pK(a)) profiles and reflect a common high pK(a) value of 6.8, indicating electrostatic interactions with H162. Residue H171 in wild-type cTnI does not play a similar role. CONCLUSION: This work provides evidence for the mechanism by which cTnI A162H improves myocardial performance during acidosis. The electrostatic interaction between residues E15 and E19 in troponin C and H162 in TnI at low pH is responsible for stabilizing the conformation of troponin C that leads to contraction, thus partially ablating the decreased Ca(2+)-sensitivity caused by acidosis.


Assuntos
Acidose/prevenção & controle , Miocárdio/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Troponina C/metabolismo , Troponina I/metabolismo , Acidose/fisiopatologia , Sequência de Aminoácidos , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Isquemia Miocárdica/fisiopatologia
17.
Biochemistry ; 51(22): 4473-87, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22591429

RESUMO

Calcium binding to the regulatory domain of cardiac troponin C (cNTnC) causes a conformational change that exposes a hydrophobic surface to which troponin I (cTnI) binds, prompting a series of protein-protein interactions that culminate in muscle contraction. A number of cTnC variants that alter the Ca(2+) sensitivity of the thin filament have been linked to disease. Tikunova and Davis engineered a series of cNTnC mutations that altered Ca(2+) binding properties and studied the effects on the Ca(2+) sensitivity of the thin filament and contraction [Tikunova, S. B., and Davis, J. P. (2004) J. Biol. Chem. 279, 35341-35352]. One of the mutations they engineered, the L48Q variant, resulted in a pronounced increase in the cNTnC Ca(2+) binding affinity and Ca(2+) sensitivity of cardiac muscle force development. In this work, we sought structural and mechanistic explanations for the increased Ca(2+) sensitivity of contraction for the L48Q cNTnC variant, using an array of biophysical techniques. We found that the L48Q mutation enhanced binding of both Ca(2+) and cTnI to cTnC. Nuclear magnetic resonance chemical shift and relaxation data provided evidence that the cNTnC hydrophobic core is more exposed with the L48Q variant. Molecular dynamics simulations suggest that the mutation disrupts a network of crucial hydrophobic interactions so that the closed form of cNTnC is destabilized. The findings emphasize the importance of cNTnC's conformation in the regulation of contraction and suggest that mutations in cNTnC that alter myofilament Ca(2+) sensitivity can do so by modulating Ca(2+) and cTnI binding.


Assuntos
Cálcio/metabolismo , Mutação Puntual , Troponina C/genética , Troponina C/metabolismo , Amidas/química , Sítios de Ligação , Calorimetria , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Titulometria , Troponina C/química , Troponina I/metabolismo
18.
J Biol Chem ; 287(7): 4996-5007, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22179777

RESUMO

Myocardial ischemia is characterized by reduced blood flow to cardiomyocytes, which can lead to acidosis. Acidosis decreases the calcium sensitivity and contractile efficiency of cardiac muscle. By contrast, skeletal and neonatal muscles are much less sensitive to changes in pH. The pH sensitivity of cardiac muscle can be reduced by replacing cardiac troponin I with its skeletal or neonatal counterparts. The isoform-specific response of troponin I is dictated by a single histidine, which is replaced by an alanine in cardiac troponin I. The decreased pH sensitivity may stem from the protonation of this histidine at low pH, which would promote the formation of electrostatic interactions with negatively charged residues on troponin C. In this study, we measured acid dissociation constants of glutamate residues on troponin C and of histidine on skeletal troponin I (His-130). The results indicate that Glu-19 comes in close contact with an ionizable group that has a pK(a) of ∼6.7 when it is in complex with skeletal troponin I but not when it is bound to cardiac troponin I. The pK(a) of Glu-19 is decreased when troponin C is bound to skeletal troponin I and the pK(a) of His-130 is shifted upward. These results strongly suggest that these residues form an electrostatic interaction. Furthermore, we found that skeletal troponin I bound to troponin C tighter at pH 6.1 than at pH 7.5. The data presented here provide insights into the molecular mechanism for the pH sensitivity of different muscle types.


Assuntos
Troponina I/química , Acidose/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Isquemia Miocárdica/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Eletricidade Estática , Troponina I/metabolismo
19.
J Biomol NMR ; 51(1-2): 115-22, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21947920

RESUMO

Laboratories often repeatedly determine the structure of a given protein under a variety of conditions, mutations, modifications, or in a number of states. This approach can be cumbersome and tedious. Given then a database of structures, identifiers, and corresponding (1)H,(15)N-HSQC NMR spectra for homologous proteins, we investigated whether structural information could be ascertained for a new homolog solely from its (1)H,(15)N-HSQC NMR spectrum. We addressed this question with two different approaches. First, we used a semi-automated approach with the program, ORBplus. ORBplus looks for patterns in the chemical shifts and correlates these commonalities to the explicit property of interest. ORBplus ranks resonances based on consistency of the magnitude and direction of the chemical shifts within the database, and the chemical shift correlation of the unknown protein with the database. ORBplus visualizes the results by a histogram and a vector diagram, and provides residue specific predictions on structural similarities with the database. The second method we used was partial least squares (PLS), which is a multivariate statistical technique used to correlate response and predictor variables. We investigated the ability of these methods to predict the tertiary structure of the contractile regulatory protein troponin C. Troponin C undergoes a closed-to-open conformational change, which is coupled to its function in muscle. We found that both ORBplus and PLS were able to identify patterns in the (1)H,(15)N-HSQC NMR data from different states of troponin C that correlated to its conformation.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Troponina C/química , Análise de Componente Principal , Conformação Proteica
20.
Nat Nanotechnol ; 6(2): 93-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21278750

RESUMO

Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.


Assuntos
Cristalização/métodos , Ouro/química , Nanopartículas Metálicas , Muramidase/química , Cristalografia por Raios X , Cinética , Mercúrio/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Tamanho da Partícula , Fosfinas/química , Fatores de Tempo , Tomografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA