RESUMO
Aggregation has been widely described as a factor contributing to therapeutic antibody immunogenicity. Although production of high-affinity anti-drug antibodies depends on the activation of CD4 T lymphocytes, little is known about the T-cell response induced by antibody aggregates, especially for aggregates produced in mild conditions resulting from minor handling errors of vials. Large insoluble infliximab (IFX) aggregates produced in severe elevated temperature stress conditions have been previously shown to induce human monocyte-derived dendritic cell (moDC) maturation. We here showed that large IFX aggregates recruit in vitro a significantly higher number of CD4 T-cells compared to native IFX. Moreover, a larger array of T-cell epitopes encompassing the entire variable regions was evidenced compared to the native antibody. We then compared the responses of moDCs to different types of aggregates generated by submitting IFX to mild conditions of various times of incubation at an elevated temperature. Decreasing stress duration reduced aggregate size and quantity, and subsequently altered moDC activation. Of importance, IFX aggregates generated in mild conditions and not altering moDC phenotype generated an in vitro T-cell response with a higher frequency of CD4 T cells compared to native IFX. Moreover, cross-reactivity studies of aggregate-specific T cells showed that some T cells could recognize both native and aggregated IFX, while others responded only to IFX aggregates. Taken together, our results suggest that aggregation of antibodies in mild elevated temperature stress conditions is sufficient to alter moDC phenotype in a dose-dependent manner and to increase T-cell response.
Assuntos
Linfócitos T CD4-Positivos , Monócitos , Humanos , Infliximab/farmacologia , Linfócitos T CD4-Positivos/metabolismo , TemperaturaRESUMO
Most nanoparticles produced for drug delivery purposes are spherical. However, the literature suggests that elongated particles are advantageous, notably in terms of cellular uptake. Thus, we synthesized biocompatible polylactide-b-poly(ethylene glycol) (PLA-PEG) polymers bearing carboxylate moieties, and used them to formulate worm-like nanoparticles by a simple emulsion-evaporation process. Worm-like nanoparticles with variable aspect ratio were obtained by simply adjusting the molar mass of the PLA block: the shorter the molar mass of the PLA block, the more elongated the particles. As PLA molar mass decreased from 80,000 g/mol to 13,000 g/mol, the proportion of worm-like nanoparticles increased from 0 to 46%, in contradiction with the usual behavior of block polymers based on their packing parameter. To explain this unusual phenomenon, we hypothesized the shape arises from a combination of steric and electrostatic repulsions between PEG chains bearing a carboxylate moiety present at the dichloromethane-water interface during the evaporation process. Worm-like particles turned out to be unstable when incubated at 37 °C, above polymer glass transition temperature. Indeed, above Tg, a Plateau-Rayleigh instability occurs, leading to the division of the worm-like particles into spheres. However, this instability was slow enough to assess worm-like particles uptake by murine macrophages. A slight but significant increase of internalization was observed for worm-like particles, compared to their spherical counterparts, confirming the interest of developing biocompatible anisotropic nanoparticles for pharmaceutical applications such as drug delivery.
Assuntos
Nanopartículas , Polímeros , Camundongos , Animais , Polietilenoglicóis , Poliésteres , Sistemas de Liberação de Medicamentos , Tamanho da PartículaRESUMO
COVID-19 is caused by the infection of the lungs by SARS-CoV-2. Monoclonal antibodies, such as sotrovimab, showed great efficiency in neutralizing the virus before its internalization by lung epithelial cells. However, parenteral routes are still the preferred route of administration, even for local infections, which requires injection of high doses of antibody to reach efficacious concentrations in the lungs. Lung administration of antibodies would be more relevant requiring lower doses, thus reducing the costs and the side effects. But aerosolization of therapeutic proteins is very challenging, as the different processes available are harsh and trigger protein aggregation and conformational changes. This decreases the efficiency of the treatment, and can increase its immunogenicity. To address those issues, we developed a series of new excipients composed of a trehalose core, a succinyl side chain and a hydrophobic carbon chain (from 8 to 16 carbons). Succinylation increased the solubility of the excipients, allowing their use at relevant concentrations for protein stabilization. In particular, the excipient with 16 carbons (C16TreSuc) used at 5.6 mM was able to preserve colloidal stability and antigen-binding ability of sotrovimab during the nebulization process. It could also be used as a cryoprotectant, allowing storage of sotrovimab in a lyophilized form during weeks. Finally, we demonstrated that C16TreSuc could be used as an excipient to stabilize antibodies for the treatment against COVID-19, by in vitro and in vivo assays. The presence of C16TreSuc during nebulization preserved the neutralization capacity of sotrovimab against SARS-CoV-2 in vitro; an increase of its efficacy was even observed, compared to the non-nebulized control. The in vivo study also showed the wide distribution of sotrovimab in mice lungs, after nebulization with 5.6 mM of excipient. This work brings a solution to stabilize therapeutic proteins during storage and nebulization, making pulmonary immunotherapy possible in the treatment of COVID-19 and other lung diseases.
Assuntos
COVID-19 , Excipientes , Camundongos , Animais , Excipientes/química , Trealose/química , SARS-CoV-2 , Anticorpos AntiviraisRESUMO
Tissue engineering aims to restore or replace different types of biological tissues through the association of cells, biologic factors and biomaterials. Currently, stem cells arise as a major cell source for many therapeutic indications, and their association with 3D scaffolds allow increasing regenerative medicine efficiency. In this context, the use of RNA interference to enhance or control stem cell differentiation into the desired phenotype appears as a promising strategy. However, achieving high transfection efficiency of cells in a 3D structure requires the use of a vector allowing for the spatiotemporally controlled release of the genetic material from these scaffolds. In this study, we report a new siRNA nanovector, called solvent exchange lipoplexe formulation (SELF), which has a tunable size, is stable over time in cell culture conditions and possess a high efficiency to transfect primary human mesenchymal stromal cells (hMSC). We associated SELFs with porous 3D collagen microspheres and demonstrated that the loading capacity and release kinetics were different depending on the size of the associated SELF. Interestingly, these different release profiles resulted in differences in the transfection kinetics of hMSCs. This original and unique type of gene activated matrix, with adaptable release kinetics, could be of interest for long-term and/or sequential transfection profiles of stem cells in 3D culture. STATEMENT OF SIGNIFICANCE: This work combines the use of human mesenchymal stromal cell (hMSC) and gene therapy for tissue engineering. Here, a gene-activated matrix was elaborated with collagen microspheres supporting hMSCs and acting as a reservoir for transfection vectors. This injectable GAM allows for the local and sustained delivery of nucleic acids, hence long-lasting transfection of the supported cells. With the original synthesis protocol presented herein, the size of the nanocarriers can be easily adapted, resulting in different siRNA release profiles from the microspheres. Most interestingly, different siRNA release profiles gave rise to different cell transfection profiles as assessed by the downregulation of a target gene. This highlights the versatility of the system and its suitability for various pathophysiological needs in regenerative medicine.
Assuntos
Células-Tronco Mesenquimais , Humanos , RNA Interferente Pequeno/metabolismo , Engenharia Tecidual/métodos , Diferenciação Celular , Colágeno/metabolismo , LipídeosRESUMO
In this study, we proved that the stabilisation of Pickering emulsions by polymer nanoparticles (NPs) heavily depends on polymer characteristics. We prepared NPs with four poly(lactide-co-glycolide) polymers (PLGA), of different molar masses (14,000 and 32,000 g/mol) and end groups (acid or alkylester). NPs were either bare (without stabilising polymer) or covered by polyvinyl alcohol (PVA). Pickering emulsions were prepared by mixing NP aqueous suspensions with various amounts of oil (Miglyol 812 N). First, NP wettability was directly affected by PLGA end group: ester-ending PLGA led to more hydrophobic NPs, compared to acid-ending PLGA. This effect of the end group could be slightly enhanced with smaller molar mass. Thus, bare PLGA NPs stabilised different types of emulsions (W/O/W and W/O), following Finkle's rule. However, the effect of PLGA characteristics was masked when NPs were covered by PVA, as PVA drove the stabilisation of O/W emulsions. Secondly, PLGA molar mass and end group also influenced its glass transition temperature (Tg), with spectacular consequences on emulsion formation. Indeed, the shortest ester-ending PLGA exhibited a Tg close to room temperature, when measured in the emulsion. This Tg, easily exceeded during emulsification process, led to a soft solid emulsion, stabilised by a network of NP debris.
RESUMO
The development of anti-drug Abs in response to biological products (BP) is a major drawback in the treatment of patients. Factors related to the patient, the treatment, and the product can influence BP immunogenicity. Among these factors, BP aggregates have been suggested to promote immunogenicity by acting as danger signals recognized by dendritic cells (DC) facilitating the establishment of an anti-BP CD4 T cell-dependent adaptive immune response leading to anti-drug Abs production. To date, little is known on the mechanism supporting the effect of aggregates on DCs and consequently on the T cell response. The aim of this work was to identify key signaling pathways involved in BP aggregate DC activation and T cell response. We generated aggregates by submitting infliximab (IFX), an immunogenic anti-TNF-α chimeric Ab, to heat stress. Our results showed that IFX aggregates were able to induce human monocyte-derived DC (moDC) maturation in a concentration-dependent manner. Aggregate-treated moDCs enhanced allogeneic T cell proliferation and IL-5, IL-9, and IL-13 production compared with native Ab-treated moDCs. We then investigated the implication of FcγRIIa and spleen tyrosine kinase (Syk) in DC activation and showed that they were both strongly implicated in moDC maturation induced by IFX aggregates. Indeed, we found that neutralization of FcγRIIa inhibited DC activation, and consequently, Syk inhibition led to a decrease in T cell proliferation and cytokine production in response to IFX aggregates. Taken together, our results bring new insight, to our knowledge, on how protein aggregates could induce DC and T cell activation via the FcγRIIa-Syk signaling pathway.
Assuntos
Células Dendríticas/imunologia , Infliximab/imunologia , Ativação Linfocitária/imunologia , Receptores de IgG/imunologia , Quinase Syk/imunologia , Linfócitos T/imunologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Monócitos/imunologia , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Biocompatible chemical cross-linked hybrid polyethylene glycol-based hydrogels were obtained from a sol-gel process using bis-silylated molecular precursors in biocompatible conditions. This soft procedure (pH = 7.4, at 25 °C), allows the production of microgels by microfluidics and easy encapsulation of a model protein (Bovin Serum Albumine, BSA).
Assuntos
Materiais Biocompatíveis/síntese química , Hidrogéis/síntese química , Microfluídica , Polietilenoglicóis/síntese química , Soroalbumina Bovina/química , Animais , Materiais Biocompatíveis/química , Bovinos , Géis/química , Hidrogéis/química , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/química , Propriedades de SuperfícieRESUMO
Pickering emulsions were formulated using biodegradable and biocompatible poly(lactic- co-glycolic acid) (PLGA) nanoparticles (NPs) prepared without surfactants or any other polymer than PLGA. A pharmaceutical and cosmetic oil (Miglyol) was chosen as the oil phase at a ratio of 10% w/w. These emulsions were then compared with emulsions using the same oil but formulated with well-described PLGA-poly(vinyl alcohol) (PVA) NPs, i.e., with PVA as NP stabilizers. Strikingly, the emulsions demonstrated very different structures at macroscopic, microscopic, and interfacial scales, depending on the type of NPs used. Indeed, the emulsion layer was significantly thicker when using PLGA NPs rather than PLGA-PVA NPs. This was attributed to the formation and coexistence of multiple water-in-oil-in-water (W/O/W) and simple oil-in-water (O/W) droplets, using a single step of emulsification, whereas simple O/W emulsions were obtained with PLGA-PVA NPs. The latter NPs were more hydrophilic than bare PLGA NPs because of the presence of PVA at their surface. Moreover, PLGA NPs only slightly lowered the oil/water interfacial tension whereas the decrease was more pronounced with PLGA-PVA NPs. The PVA chains at the PLGA-PVA NP surface could probably partially desorb from the NPs and adsorb at the interface, inducing the interfacial tension decrease. Finally, independent of their composition, NPs were adsorbed at the oil/water interface without influencing its rheological behavior, possibly due to their mobility at their interface. This work has direct implications in the formulation of Pickering emulsions and stresses the paramount influence of the physicochemical nature of the NP surface into the stabilization of these systems.