Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Contam Hydrol ; 264: 104363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805790

RESUMO

A series of laboratory experiments are conducted to simulate the acidification and subsequent recovery of a sand aquifer exploited by in situ recovery (ISR) mining. A sulfuric acid solution (pH 2) is first injected into a column packed with sand from the Zoovch Ovoo uranium roll front deposit (Mongolia). Solutions representative of local groundwater or enriched in cations (Na+, Mg2+) are then circulated through the column to simulate the inflow of aquifer water. pH and major ion concentrations (Na+, Cl-, SO42-, Ca2+, Mg2+, K+) measured at the column outlet reproduce the overall evolution of porewater chemistry observed in the field. The presence of minor quantities of swelling clay minerals (≈6 wt% smectite) is shown to exert an important influence on the behavior of inorganic cations, particularly H+, via ion-exchange reactions. Numerical models that consider ion-exchange on smectite as the sole solid-solution interaction are able to reproduce variations in pH and cation concentrations in the column experiments. This highlights the importance of clay minerals in controlling H+ mobility and demonstrates that sand from the studied aquifer can be described to a first order as an ion-exchanger. The present study confirms the key role of clay minerals in controlling water chemistry in acidic environments through ion-exchange processes. In a context of managing the long-term environmental footprint of industrial and mining activities (ISR, acid mine drainage…), this work will bring insights for modeling choices and identification of key parameters to help operators to define their production and/or remediation strategies.


Assuntos
Silicatos de Alumínio , Cátions , Argila , Água Subterrânea , Mineração , Areia , Argila/química , Concentração de Íons de Hidrogênio , Cátions/química , Água Subterrânea/química , Silicatos de Alumínio/química , Areia/química , Modelos Químicos , Modelos Teóricos , Ácidos Sulfúricos/química
2.
Chemosphere ; 313: 137369, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427575

RESUMO

In this study, new experimental data for the adsorption of lead onto a swelling clay mineral with a tetrahedral charge (beidellite) at the ultratrace level (<10-10 M) are presented. The data were interpreted using an ion-exchange multisite model that considers the sorption of major cations (including H+), which always compete with trace elements for sorption onto mineral surfaces in natural environments. The ability of the proposed model to predict experimental Kd values under various conditions of ionic strength (fixed by NaCl solutions) and aqueous cation compositions (including Pb2+ and PbCl+) was tested. The proposed model was applied to experimental data previously published for other types of swelling clay minerals, and the results were compared with the results obtained using previously published models. The preferential adsorption of chloride ion pairs, as well as the effect of the swelling clay crystal chemistry on lead adsorption, were assessed. Finally, the selective adsorption behavior of 226Ra compared to 210Pb was demonstrated, which has implications for the study of many environmental processes using isotope partitioning.


Assuntos
Chumbo , Silicatos , Argila , Silicatos/química , Minerais , Cátions , Adsorção , Concentração de Íons de Hidrogênio
3.
Chemosphere ; 275: 130103, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677272

RESUMO

Extracellular polymeric substances (EPS) produced by microorganisms have a key role in the sedimentary compartment, e.g. promoting aggregation and biostabilisation of sediment particles and increasing chemical reactivity at the water/sediment interface. Therefore, proper extraction methods are needed to study this EPS matrix. In this work, nine extraction methods based on physical (centrifugation, sonication), chemical (sodium hydroxide, sodium pyrophosphate, sodium tetraborate), and both chemical and physical (cation exchange resins, i.e. CER) treatments and their combinations, as well as the solid:liquid ratio used for extraction, were compared based on the quantity and compositions of extracted EPS. The organic carbon extracted was quantified and the nature of biochemical macromolecules (proteins, polysaccharides, and humic-like compounds) was evaluated using colorimetric methods. The amount of ATP was used as an indicator of cell lysis and showed contamination with intracellular materials in EPS extracted with chemical methods. Moreover, chemical extraction presented a large quantity of impurities due to non-removal of reactant salts by ultracentrifugation. For the nine methods tested, humic-like substances represented the main fraction of the extracted EPS, but for chemical extraction, the presence of humic materials from the sediment organic fraction was due to non-specific extraction of the EPS fraction. Therefore, chemicals methods are not recommended to extract EPS from sediment. Despite their low extraction efficiency, physical methods and CER, i.e. 'soft' extraction methods, are preferred using a solid:liquid ratio 1:40.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Lagos , Resinas de Troca de Cátion , Polímeros , Esgotos , Hidróxido de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA