Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(2): 150, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368415

RESUMO

Complex DNA damage (CDD), containing two or more DNA lesions within one or two DNA helical turns, is a signature of ionising radiation (IR) and contributes significantly to the therapeutic effect through cell killing. The levels and complexity of CDD increases with linear energy transfer (LET), however, the specific cellular response to this type of DNA damage and the critical proteins essential for repair of CDD is currently unclear. We performed an siRNA screen of ~240 DNA damage response proteins to identify those specifically involved in controlling cell survival in response to high-LET protons at the Bragg peak, compared to low-LET entrance dose protons which differ in the amount of CDD produced. From this, we subsequently validated that depletion of 8-oxoguanine DNA glycosylase (OGG1) and poly(ADP-ribose) glycohydrolase (PARG) in HeLa and head and neck cancer cells leads to significantly increased cellular radiosensitivity specifically following high-LET protons, whilst no effect was observed after low-LET protons and X-rays. We subsequently confirmed that OGG1 and PARG are both required for efficient CDD repair post-irradiation with high-LET protons. Importantly, these results were also recapitulated using specific inhibitors for OGG1 (TH5487) and PARG (PDD00017273). Our results suggest OGG1 and PARG play a fundamental role in the cellular response to CDD and indicate that targeting these enzymes could represent a promising therapeutic strategy for the treatment of head and neck cancers following high-LET radiation.


Assuntos
DNA Glicosilases , Neoplasias de Cabeça e Pescoço , Humanos , Prótons , Transferência Linear de Energia , Dano ao DNA , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo
2.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061330

RESUMO

Clicker questions are a commonly used active learning technique that stimulates student interactions to help advance understanding of key concepts. Clicker questions are often administered with an initial vote, peer discussion, and a second vote, followed by broader classroom explanation. While clickers can promote learning, some studies have questioned whether students maintain this performance on later exams, highlighting the need to further understand how student answer patterns relate to their understanding of the material and to identify ways for clickers to benefit a broader range of students. Systematic requizzing of concepts during at-home assignments represents a promising mechanism to improve student learning. Thus, we paired clicker questions with at-home follow-up reflections to help students articulate and synthesize their understandings. This pairing of clickers with homework allowed us to decipher how student answer patterns related to their underlying conceptions and to determine if revisiting concepts provided additional benefits. We found that students answering both clicker votes correctly performed better on isomorphic exam questions and that students who corrected their answers after the first vote did not show better homework or exam performance than students who maintained an incorrect answer across both votes. Furthermore, completing the follow-up homework assignment modestly boosted exam question performance. Our data suggest that longer-term benefits of clickers and associated homework may stem from students having repeated opportunities to retrieve, refine, and reinforce emerging conceptions.

3.
Pestic Biochem Physiol ; 187: 105173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127039

RESUMO

Declines of the monarch butterfly population have prompted large-scale plantings of milkweed to restore the population. In North America, there are >73 species of milkweed to choose from for these nationwide plantings. However, it is unclear how different milkweed species affect monarch caterpillar physiology, particularly detoxification enzyme activity and gene expression, given the highly variable cardenolide composition across milkweed species. Here, we investigate the effects of a high cardenolide, tropical milkweed species and a low cardenolide, swamp milkweed species on pyrethroid sensitivity as well as detoxification enzyme activity and expression in monarch caterpillars. Caterpillars fed on each species through the fifth-instar stage and were topically treated with bifenthrin after reaching this final-instar stage. Esterase, glutathione S-transferase, and cytochrome P450 monooxygenase activities were quantified as well as the expression of selected esterase, glutathione S-transferase, ABC transporter, and cytochrome P450 monooxygenase transcripts. There were no significant differences in survival 24 h after treatment with bifenthrin. However, bifenthrin significantly increased glutathione S-transferase activity in caterpillars feeding on tropical milkweed and significantly decreased esterase activity in caterpillars feeding on tropical and swamp milkweed. Significant differential expression of ABC transporter, glutathione S-transferase, and esterase genes was observed for caterpillars feeding on tropical and swamp milkweed and not receiving bifenthrin treatment. Furthermore, significant differential expression of glutathione S-transferase and esterase genes was observed for bifenthrin-treated and -untreated caterpillars feeding on tropical milkweed relative to swamp milkweed. These results suggest that feeding on different milkweed species can affect detoxification and development mechanisms with which monarch caterpillars rely on to cope with their environment.


Assuntos
Asclepias , Borboletas , Inseticidas , Piretrinas , Transportadores de Cassetes de Ligação de ATP , Animais , Asclepias/metabolismo , Borboletas/genética , Cardenolídeos/metabolismo , Esterases/genética , Esterases/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Inseticidas/metabolismo , Inseticidas/toxicidade , Oxigenases de Função Mista/metabolismo , Piretrinas/metabolismo , Piretrinas/toxicidade
4.
PLoS One ; 17(5): e0268902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613094

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is an economically important pest of field corn (Zea mays L.) across the United States (U.S.) Corn Belt. Repeated use of transgenic hybrids expressing Bacillus thuringiensis (Bt) proteins has selected for field-evolved resistance to all current rootworm-active Bt proteins. The newest product available for WCR management is SmartStax® PRO, a rootworm-active pyramid containing Cry3Bb1, Cry34/35Ab1 [now reclassified as Gpp34Ab1/Tpp35Ab1] and a new mode of action, DvSnf7 dsRNA. Understanding the fitness of adult WCR after dietary exposure to SmartStax® PRO will identify potential impacts on WCR population dynamics and inform efforts to optimize resistance management strategies. Therefore, the objective of the present study was to characterize the effect of SmartStax® PRO dietary exposure on WCR life history traits. Adult WCR were collected during 2018 and 2019 from emergence tents placed over replicated field plots of SmartStax® PRO or non-rootworm Bt corn at a site with a history of rootworm-Bt trait use and suspected resistance to Cry3Bb1 and Cry34/35Ab1. Adult survival was reduced by 97.1-99.7% in SmartStax® PRO plots relative to the non-rootworm Bt corn plots during the study. Individual male/female pairs were fed different diets of ear tissue to simulate lifetime or adult exposure. Life history parameters measured included adult longevity, adult head capsule width, lifetime female egg production, and egg viability. Results indicate that lifetime or adult exposure to SmartStax® PRO significantly reduced adult longevity and lifetime egg production. Larval exposure to SmartStax® PRO significantly reduced WCR adult size. Results from this study collectively suggest that SmartStax® PRO may negatively impact WCR life history traits, which may lead to reduced population growth when deployed in an area with WCR resistance to Bt traits.


Assuntos
Bacillus thuringiensis , Besouros , Características de História de Vida , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Besouros/genética , Exposição Dietética , Endotoxinas/genética , Feminino , Resistência a Inseticidas/genética , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Zea mays/genética
5.
Pest Manag Sci ; 78(4): 1356-1366, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34873825

RESUMO

BACKGROUND: Western corn rootworm (WCR; Diabrotica virgifera virgifera) field-evolved resistance to transgenic maize expressing the Cry3Bb1 protein derived from Bacillus thuringiensis (Bt) has been confirmed across the United States Corn Belt. Although use of pyramided hybrids expressing Cry3Bb1 + Cry34/35Ab1 has increased in recent years to mitigate existing WCR Bt resistance, susceptibility of Nebraska WCR populations to this rootworm-Bt pyramid has not been assessed. Plant-based bioassays were used to characterize the susceptibility of WCR populations to Cry3Bb1 and Cry3Bb1 + Cry34/35Ab1 maize. Populations were collected from areas of northeastern Nebraska with a history of planting Bt maize that expressed Cry3Bb1 and Cry34/35Ab1. RESULTS: Significant differences in mean corrected survival among populations within Bt hybrids indicated a mosaic of WCR susceptibility to Cry3Bb1 + Cry34/35Ab1 and Cry3Bb1 maize occurred in the landscape. All field populations exhibited some level of resistance to one or both Bt hybrids when compared to susceptible laboratory control populations in bioassays. Most WCR populations exhibited incomplete resistance to Cry3Bb1 + Cry34/35Ab1 maize (92%) and complete resistance to Cry3Bb1 maize (79%). CONCLUSION: The present study confirms the first cases of field-evolved resistance to Cry3Bb1 + Cry34/35Ab1 maize in Nebraska and documents a landscape-wide WCR Cry3Bb1 resistance pattern in areas characterized by long-term continuous maize production and associated planting of Cry3Bb1 hybrids. Use of a multi-tactic integrated pest management approach is needed in areas of continuous maize production to slow or mitigate resistance evolution to Bt maize. © 2021 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Besouros/genética , Endotoxinas/genética , Endotoxinas/farmacologia , Resistência a Inseticidas/genética , Larva/genética , Nebraska , Plantas Geneticamente Modificadas/genética , Zea mays/genética
6.
J Econ Entomol ; 114(6): 2370-2380, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34532742

RESUMO

The monarch butterfly, Danaus plexippus L., has evolved to be insensitive to milkweed cardenolides via genetic modifications of Na+/K+-ATPase. There is concern for insecticide exposures near agriculture, with little information on monarch caterpillar toxicology. It is unclear how cardenolide insensitivity may affect the sensitivity of monarch caterpillars to pyrethroid insecticides. Additionally, potassium fertilizers may affect monarch caterpillar physiology and cardenolide sequestration. Here, we investigated the growth, survival, and development of caterpillars exposed to the cardenolide ouabain, bifenthrin, and potassium chloride (KCl) alone and in combination. Caterpillars were either exposed to 1) ouabain from third- to fifth-instar stage, 2) KCl at fifth-instar stage, 3) KCl and bifenthrin at fifth-instar stage, or 4) combinations of ouabain at third-instar stage + KCl + bifenthrin at fifth-instar stage. Caterpillar weight, diet consumption, frass, and survival were recorded for the duration of the experiments. It was observed that 1-3 mg ouabain/g diet increased body weight and diet consumption, whereas 50 mg KCl/g diet decreased body weight and diet consumption. Caterpillars feeding on KCl and treated with 0.2 µg/µl bifenthrin consumed significantly less diet compared to individuals provided untreated diet. However, there was no effect on survival or body weight. Combinations of KCl + ouabain did not significantly affect caterpillar survival or body weight following treatment with 0.1 µg/µl bifenthrin. At the concentrations tested, there were no effects observed for bifenthrin sensitivity with increasing cardenolide or KCl concentrations. Further studies are warranted to understand how milkweed-specific cardenolides, at increasing concentrations, and agrochemical inputs can affect monarch caterpillar physiology near agricultural landscapes.


Assuntos
Borboletas , Inseticidas , Piretrinas , Animais , Cardenolídeos , Larva , Potássio
7.
J Econ Entomol ; 114(5): 2096-2107, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34323975

RESUMO

The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a significant pest of field corn, Zea mays L. (Poales: Poaceae), across the United States Corn Belt. Widespread adoption and continuous use of corn hybrids expressing the Cry3Bb1 protein to manage the western corn rootworm has resulted in greater than expected injury to Cry3Bb1-expressing hybrids in multiple areas of Nebraska. Single-plant bioassays were conducted on larval western corn rootworm populations to determine the level of resistance present in various Nebraska counties. The results confirmed a mosaic of susceptibility to Cry3Bb1 across Nebraska. Larval development metrics, including head capsule width and fresh weight, were measured to quantify the relationship between the level of resistance to Cry3Bb1 and larval developmental rate. Regression and correlation analyses indicate a significant positive relationship between Cry3Bb1 corrected survival and both larval development metrics. Results indicate that as the level of resistance to Cry3Bb1 within field populations increases, mean head capsule width and larval fresh weight also increase. This increases our understanding of western corn rootworm population dynamics and age structure variability present in the transgenic landscape that is part of the complex interaction of factors that drives resistance evolution. This collective variability and complexity within the landscape reinforces the importance of making corn rootworm management decisions based on information collected at the local level.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Benchmarking , Besouros/genética , Endotoxinas , Resistência a Inseticidas , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Zea mays/genética
8.
Pest Manag Sci ; 77(6): 2939-2947, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33619825

RESUMO

BACKGROUND: Crop pest management requires an understanding of the complex interactions among species that potentially impact crop yield. In soybean, the velvetbean caterpillar, Anticarsia gemmatalis (Hübner), and the soybean looper, Chrysodeixis includens (Walker), are described as key pests, sharing the same feeding guild. We assessed the intraguild interactions of these species under laboratory conditions. Fitness cost study was conducted to examine the influence of competition on insect development. A video tracking system was used to evaluate behavioral parameters during larval interactions in scenarios with and without food availability. RESULTS: In the fitness cost assay, pupal weight was not significantly affected, regardless of sex. However, larval and pupal survival were influenced by the competition, especially in third versus fifth instar scenarios. We detected 40.00% cannibalism and 46.67% predation when A. gemmatalis and C. includens third instars competed with A. gemmatalis fifth instar, respectively. Distance moved, distance between larvae, body contact (food available) and frequency in food of C. includens larvae were negatively affected by interactions. Anticarsia gemmatalis larvae showed highly active behavior, moving twice or more the distance compared to C. includens larvae, and A. gemmatalis spent more time in body contact with food. CONCLUSION: Our results suggest that A. gemmatalis has a competitive advantage over C. includens. This study provides important information regarding lepidopteran behavior in soybean. We recommended that additional studies are necessary to understand the effects of interactions, especially in field conditions. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Glycine max , Mariposas , Animais , Proteínas Hemolisinas , Larva , Controle Biológico de Vetores
9.
New Phytol ; 194(2): 321-336, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22380757

RESUMO

We conducted the most extensive meta-analysis of plant and animal responses to elevated CO(2) to date. We analysed > 5000 data points extracted from 270 papers published between 1979 and 2009. We examined the changes in 19 animal response variables to the main effect of elevated CO(2). We found strong evidence for significant variation among arthropod orders and feeding guilds, including interactions in the direction of response. We also examined the main effects of elevated CO(2) on: six plant growth and allocation responses, seven primary metabolite responses, eight secondary metabolite responses, and four physical defence responses. We examined these response variable changes under two-way and three-way interactions between CO(2) and: soil nitrogen, ambient temperature, drought, light availability, photosynthetic pathway, reproductive system, plant growth rate, plant growth form, tissue type, and nitrogen fixation. In general we found smaller effect sizes for many response variables than have been previously reported. We also found that many of the oft-reported main effects of CO(2) obscure the presence of significant two- and three-way interactions, which may help better explain the relationships between the response variables and elevated CO(2).


Assuntos
Artrópodes/efeitos dos fármacos , Artrópodes/fisiologia , Dióxido de Carbono/farmacologia , Meio Ambiente , Interações Hospedeiro-Parasita/efeitos dos fármacos , Plantas/efeitos dos fármacos , Plantas/parasitologia , Animais , Herbivoria/efeitos dos fármacos
10.
Glob Chang Biol ; 18(9): 2771-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501055

RESUMO

Experimental studies of the impact of climatic change are hampered by their inability to consider multiple climate change scenarios and indeed often consider no more than simple climate sensitivity such as a uniform increase in temperature. Modelling efforts offer the ability to consider a much wider range of realistic climate projections and are therefore useful, in particular, for estimating the sensitivity of impact predictions to differences in geographical location, and choice of climate change scenario and climate model projections. In this study, we used well-established degree-day models to predict the voltinism of 13 agronomically important pests in California, USA. We ran these models using the projections from three Atmosphere-Ocean Coupled Global Circulation Models (AOCGCMs or GCMs), in conjunction with the SRES scenarios. We ran these for two locations representing northern and southern California. We did this for both the 2050s and 2090s. We used anova to partition the variation in the resulting voltinism among time period, climate change scenario, GCM and geographical location. For these 13 pest species, the choice of climate model explained an average of 42% of the total variation in voltinism, far more than did geographical location (33%), time period (17%) or scenario (1%). The remaining 7% of the variation was explained by various interactions, of which the location by GCM interaction was the strongest (5%). Regardless of these sources of uncertainty, a robust conclusion from our work is that all 13 pest species are likely to experience increases in the number of generations that they complete each year. Such increased voltinism is likely to have significant consequences for crop protection and production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA