Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(5)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628793

RESUMO

Silver nanoparticle (AgNP) production and their use as antimicrobial agents is a current area of active research. Biosynthesis is the most sustainable production method, and fungi have become candidates of interest in AgNP production. However, investigations into the physiological responses of fungi due to silver exposure are scanty. This present work utilized two strains of Saccharomyces cerevisiae (one used in commercial fermentation and a naturally occurring strain) to determine the physiological consequences of their transient exposure to AgNO3. The assessments were based on studies involving growth curves, minimal inhibitory concentration assays, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging, and inductively coupled plasma optical emission spectroscopy (ICP-OES). Results indicated (a) the capability of S. cerevisiae to produce silver nanoparticles, even at elevated levels of exposure; (b) strain origin had no significant impact on S. cerevisiae physiological response to AgNO3; and (c) coexposure to copper and silver significantly increased intracellular copper, silver, and calcium in treated yeast cells. In addition, electron microscopy and ICP-OES results revealed that both strains internalized silver after exposure, resulting in the shrunken and distorted physical appearance visible on SEM micrographs of treated cells. Though a promising candidate for AgNPs biosynthesis, this study analyzed the effects of transient silver exposure on S. cerevisiae growth physiology and morphology.

2.
J Fungi (Basel) ; 7(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803838

RESUMO

Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA