Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 13962-13973, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38727611

RESUMO

Dimeric complexes composed of d8 square planar metal centers and rigid bridging ligands provide model systems to understand the interplay between attractive dispersion forces and steric strain in order to assist the development of reliable methods to model metal dimer complexes more broadly. [Ir2 (dimen)4]2+ (dimen = para-diisocyanomenthane) presents a unique case study for such phenomena, as distortions of the optimal structure of a ligand with limited conformational flexibility counteract the attractive dispersive forces from the metal and ligand to yield a complex with two ground state deformational isomers. Here, we use ultrafast X-ray solution scattering (XSS) and optical transient absorption spectroscopy (OTAS) to reveal the nature of the equilibrium distribution and the exchange rate between the deformational isomers. The two ground state isomers have spectrally distinct electronic excitations that enable the selective excitation of one isomer or the other using a femtosecond duration pulse of visible light. We then track the dynamics of the nonequilibrium depletion of the electronic ground state population─often termed the ground state hole─with ultrafast XSS and OTAS, revealing a restoration of the ground state equilibrium in 2.3 ps. This combined experimental and theoretical study provides a critical test of various density functional approximations in the description of bridged d8-d8 metal complexes. The results show that density functional theory calculations can reproduce the primary experimental observations if dispersion interactions are added, and a hybrid functional, which includes exact exchange, is used.

2.
J Phys Chem A ; 128(25): 4992-4998, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38709555

RESUMO

The dynamics of cyclopentadiene (CP) following optical excitation at 243 nm was investigated by time-resolved pump-probe X-ray scattering using 16.2 keV X-rays at the Linac Coherent Light Source (LCLS). We present the first ultrafast structural evidence that the reaction leads directly to the formation of bicyclo[2.1.0]pentene (BP), a strained molecule with three- and four-membered rings. The bicyclic compound decays via a thermal backreaction to the vibrationally hot CP with a time constant of 21 ± 3 ps. A minor channel leads to ring-opened structures on a subpicosecond time scale.

3.
PLoS One ; 19(5): e0304064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787850

RESUMO

Asymmetric cell division is an important mechanism that generates cellular diversity during development. Not only do asymmetric cell divisions produce daughter cells of different fates, but many can also produce daughters of different sizes, which we refer to as Daughter Cell Size Asymmetry (DCSA). In Caenorhabditis elegans, apoptotic cells are frequently produced by asymmetric divisions that exhibit DCSA, where the smaller daughter dies. We focus here on the divisions of the Q.a and Q.p neuroblasts, which produce larger surviving cells and smaller apoptotic cells and divide with opposite polarity using both distinct and overlapping mechanisms. Several proteins regulate DCSA in these divisions. Previous studies showed that the PIG-1/MELK and TOE-2 proteins regulate DCSA in both the Q.a and Q.p divisions, and the non-muscle myosin NMY-2 regulates DCSA in the Q.a division but not the Q.p division. In this study, we examined endogenously tagged NMY-2, TOE-2, and PIG-1 reporters and characterized their distribution at the cortex during the Q.a and Q.p divisions. In both divisions, TOE-2 localized toward the side of the dividing cell that produced the smaller daughter, whereas PIG-1 localized toward the side that produced the larger daughter. As previously reported, NMY-2 localized to the side of Q.a that produced the smaller daughter and did not localize asymmetrically in Q.p. We used temperature-sensitive nmy-2 mutants to determine the role of nmy-2 in these divisions and were surprised to find that these mutants only displayed DCSA defects in the Q.p division. We generated double mutant combinations between the nmy-2 mutations and mutations in toe-2 and pig-1. Because previous studies indicate that DCSA defects result in the transformation of cells fated to die into their sister cells, the finding that the nmy-2 mutations did not significantly alter the Q.a and Q.p DCSA defects of toe-2 and pig-1 mutants but did alter the number of daughter cells produced by Q.a and Q.p suggests that nmy-2 plays a role in specifying the fates of the Q.a and Q.p that is independent of its role in DCSA.


Assuntos
Divisão Celular Assimétrica , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Tamanho Celular , Miosinas/metabolismo , Miosinas/genética , Proteínas Serina-Treonina Quinases
4.
J Am Chem Soc ; 146(5): 3262-3269, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270463

RESUMO

We present time-resolved X-ray absorption spectra of ionized liquid water and demonstrate that OH radicals, H3O+ ions, and solvated electrons all leave distinct X-ray-spectroscopic signatures. Particularly, this allows us to characterize the electron solvation process through a tool that focuses on the electronic response of oxygen atoms in the immediate vicinity of a solvated electron. Our experimental results, supported by ab initio calculations, confirm the formation of a cavity in which the solvated electron is trapped. We show that the solvation dynamics are governed by the magnitude of the random structural fluctuations present in water. As a consequence, the solvation time is highly sensitive to temperature and to the specific way the electron is injected into water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA