Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 32(12): 2765-2771.e4, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35472310

RESUMO

The frog-killing chytrid fungus Batrachochytrium dendrobatidis (Bd) is decimating amphibian populations around the world.1-4Bd has a biphasic life cycle, alternating between motile zoospores that disperse within aquatic environments and sessile sporangia that grow within the mucus-coated skin of amphibians.5,6 Zoospores lack cell walls and swim rapidly through aquatic environments using a posterior flagellum and crawl across solid surfaces using actin structures similar to those of human cells.7,8Bd transitions from this motile dispersal form to its reproductive form by absorbing its flagellum, rearranging its actin cytoskeleton, and rapidly building a chitin-based cell wall-a process called "encystation."5-7 The resulting sporangium increases in volume by two or three orders of magnitude while undergoing rounds of mitosis without cytokinesis to form a large ceonocyte. The sporangium then cellurizes by dividing its cytoplasm into dozens of new zoospores. After exiting the sporangium through a discharge tube onto the amphibian skin, daughter zoospores can then reinfect the same individual or find a new host.5 Although encystation is critical to Bd growth, whether and how this developmental transition is triggered by external signals was previously unknown. We discovered that exposure to amphibian mucus triggers rapid and reproducible encystation within minutes. This response can be recapitulated with purified mucin, the bulk component of mucus, but not by similarly viscous methylcellulose or simple sugars. Mucin-induced encystation does not require gene expression but does require surface adhesion, calcium signaling, and modulation of the actin cytoskeleton. Mucus-induced encystation may represent a key mechanism for synchronizing Bd development with the arrival at the host.


Assuntos
Anfíbios , Quitridiomicetos , Muco , Anfíbios/microbiologia , Animais , Anuros , Quitridiomicetos/fisiologia , Mucinas , Muco/química , Pele
2.
Curr Biol ; 31(6): 1192-1205.e6, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33561386

RESUMO

Cells from across the eukaryotic tree use actin polymer networks for a wide variety of functions, including endocytosis, cytokinesis, and cell migration. Despite this functional conservation, the actin cytoskeleton has undergone significant diversification, highlighted by the differences in the actin networks of mammalian cells and yeast. Chytrid fungi diverged before the emergence of the Dikarya (multicellular fungi and yeast) and therefore provide a unique opportunity to study actin cytoskeletal evolution. Chytrids have two life stages: zoospore cells that can swim with a flagellum and sessile sporangial cells that, like multicellular fungi, are encased in a chitinous cell wall. Here, we show that zoospores of the amphibian-killing chytrid Batrachochytrium dendrobatidis (Bd) build dynamic actin structures resembling those of animal cells, including an actin cortex, pseudopods, and filopodia-like spikes. In contrast, Bd sporangia assemble perinuclear actin shells and actin patches similar to those of yeast. The use of specific small-molecule inhibitors indicate that nearly all of Bd's actin structures are dynamic and use distinct nucleators: although pseudopods and actin patches are Arp2/3 dependent, the actin cortex appears formin dependent and actin spikes require both nucleators. Our analysis of multiple chytrid genomes reveals actin regulators and myosin motors found in animals, but not dikaryotic fungi, as well as fungal-specific components. The presence of animal- and yeast-like actin cytoskeletal components in the genome combined with the intermediate actin phenotypes in Bd suggests that the simplicity of the yeast cytoskeleton may be due to evolutionary loss.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Quitridiomicetos/classificação , Quitridiomicetos/metabolismo , Evolução Molecular , Anfíbios/microbiologia , Animais
3.
PLoS One ; 15(10): e0240480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33079945

RESUMO

Global amphibian populations are being decimated by chytridiomycosis, a deadly skin infection caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Although ongoing efforts are attempting to limit the spread of these infections, targeted treatments are necessary to manage the disease. Currently, no tools for genetic manipulation are available to identify and test specific drug targets in these fungi. To facilitate the development of genetic tools in Bd and Bsal, we have tested five commonly used antibiotics with available resistance genes: Hygromycin, Blasticidin, Puromycin, Zeocin, and Neomycin. We have identified effective concentrations of each for selection in both liquid culture and on solid media. These concentrations are within the range of concentrations used for selecting genetically modified cells from a variety of other eukaryotic species.


Assuntos
Anfíbios/microbiologia , Antifúngicos/farmacologia , Batrachochytrium/efeitos dos fármacos , Batrachochytrium/crescimento & desenvolvimento , Micologia/métodos , Animais , Batrachochytrium/genética , Bleomicina/farmacologia , Cinamatos/farmacologia , Testes Diagnósticos de Rotina , Avaliação Pré-Clínica de Medicamentos , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Testes de Sensibilidade Microbiana , Neomicina/farmacologia , Puromicina/farmacologia , Pirrolidinonas/farmacologia , Seleção Genética
4.
Dis Aquat Organ ; 140: 1-11, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32618283

RESUMO

Discovered in 2013, the chytrid fungus Batrachochytrium salamandrivorans (Bsal) is an emerging amphibian pathogen that causes ulcerative skin lesions and multifocal erosion. A closely related pathogen, B. dendrobatidis (Bd), has devastated amphibian populations worldwide, suggesting that Bsal poses a significant threat to global salamander biodiversity. To expedite research into this emerging threat, we seek to standardize protocols across the field so that results of laboratory studies are reproducible and comparable. We have collated data and experience from multiple labs to standardize culturing practices of Bsal. Here we outline common culture practices including a medium for standardized Bsal growth, standard culturing protocols, and a method for isolating Bsal from infected tissue.


Assuntos
Quitridiomicetos , Micoses/veterinária , Anfíbios , Animais , Biodiversidade , Urodelos
5.
Elife ; 92020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32392127

RESUMO

Chytrids are early-diverging fungi that share features with animals that have been lost in most other fungi. They hold promise as a system to study fungal and animal evolution, but we lack genetic tools for hypothesis testing. Here, we generated transgenic lines of the chytrid Spizellomyces punctatus, and used fluorescence microscopy to explore chytrid cell biology and development during its life cycle. We show that the chytrid undergoes multiple rounds of synchronous nuclear division, followed by cellularization, to create and release many daughter 'zoospores'. The zoospores, akin to animal cells, crawl using actin-mediated cell migration. After forming a cell wall, polymerized actin reorganizes into fungal-like cortical patches and cables that extend into hyphal-like structures. Actin perinuclear shells form each cell cycle and polygonal territories emerge during cellularization. This work makes Spizellomyces a genetically tractable model for comparative cell biology and understanding the evolution of fungi and early eukaryotes.


Assuntos
Quitridiomicetos/citologia , Quitridiomicetos/crescimento & desenvolvimento , Quitridiomicetos/genética , Actinas/metabolismo , Evolução Biológica , Ciclo Celular , Movimento Celular , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Microrganismos Geneticamente Modificados , Mitose , Morfogênese , Esporos Fúngicos/fisiologia , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA