Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genetics ; 145(4): 1109-24, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9093862

RESUMO

The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/crescimento & desenvolvimento , Genes de Plantas , Proteínas de Plantas/genética , Sementes/ultraestrutura , Fatores de Transcrição/genética
2.
Plant Cell ; 7(3): 333-345, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12242374

RESUMO

Arabidopsis superman (sup, also referred to as floral mutant10) mutants have previously been shown to have flowers with supernumerary stamens and reduced carpels as a result of ectopic expression of the floral homeotic gene APETALA3 (AP3). Here, we report that sup mutations also cause specific alterations in ovule development. Growth of the outer integument of wild-type ovules occurs almost exclusively on the abaxial side of the ovule, resulting in a bilaterally symmetrical hoodlike structure. In contrast, the outer integument of sup mutant ovules grows equally on all sides of the ovule, resulting in a nearly radially symmetrical tubular shape. Thus, one role of SUP is to suppress growth of the outer integument on the adaxial side of the ovule. Genetic analyses showed that the effects of sup mutations on ovule development are independent of the presence or absence of AP3 activity. Thus, SUP acts through different mechanisms in its early role in ensuring proper determination of carpel identity and in its later role in asymmetric suppression of outer integument growth.

3.
Proc Natl Acad Sci U S A ; 91(13): 5761-5, 1994 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-7912435

RESUMO

Ovules are the developmental precursors of seeds. In angiosperms the ovules are enclosed within the central floral organs, the carpels. We have identified a homeotic mutation in Arabidopsis, "bell" (bel1), which causes transformation of ovule integuments into carpels. In situ hybridization analysis shows that this mutation leads to increased expression of the carpel-determining homeotic gene AGAMOUS (AG) in the mutant ovules. Introduction of a constitutively expressed AG transgene into wild-type plants causes the ovules to resemble those of bel1 mutants. We propose that the BEL1 gene product directs normal integument development, in part by suppressing AG expression in this structure. Our results allow expansion of the current model of floral organ identity to include regulation of ovule integument identity.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica , Genes Homeobox , Genes de Plantas , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Hibridização In Situ , Microscopia Eletrônica de Varredura , Mutação , Transformação Genética
4.
Plant Cell ; 5(10): 1231-1239, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12271024
5.
Plant Cell ; 4(10): 1237-1249, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12297633

RESUMO

Ovules are complex structures that are present in all seed bearing plants and are contained within the carpels in flowering plants. Ovules are the site of megasporogenesis and megagametogenesis and, following fertilization, develop into seeds. We combined genetic methods with anatomical and morphological analyses to dissect ovule development. Here, we present a detailed description of the morphological development of Arabidopsis ovules and report on the isolation of two chemically induced mutants, bell (bel1) and short integuments (sin1), with altered ovule development. Phenotypic analyses indicated that bel1 mutants initiate a single integument-like structure that develops aberrantly, sin1 mutants initiate two integuments, but growth of the integuments is disrupted such that cell division continues without normal cell elongation. Both mutants can differentiate archesporial cells, but neither forms a normal embryo sac. Genetic analyses indicated that bel1 segregates as a single recessive mutation, and complementation tests showed that the two mutants are not allelic. The phenotypes of the mutants indicate that normal morphological development of the integuments and proper embryo sac formation are interdependent or are governed in part by common pathways. The ovule mutants that we describe in Arabidopsis represent novel genetic tools for the study of this stage of reproductive development.

6.
Planta ; 184(3): 291-306, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24194146

RESUMO

Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62-96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.

7.
Planta ; 184(3): 307-18, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24194147

RESUMO

The fine structure of plasmodesmata in vascular bundles and contiguous tissues of mature leaf blades of sugarcane (Saccharum interspecific hybrid L62-96) was studied with the transmission electron microscope. Tissues were fixed in glutaraldehyde, with and without the addition of tannic acid, and postfixed in OsO4. The results indicate that the fine structure of plasmodesmata in sugarcane differs among various cell combinations in a cell-specific manner, but that three basic structural variations can be recognized among plasmodesmata in the mature leaf: 1) Plasmodesmata between mesophyll cells. These plasmodesmata possess amorphous, electron-opaque structures, termed sphincters, that extend from plasma membrane to desmotubule near the orifices of the plasmodesmata. The cytoplasmic sleeve is filled by the sphincters where they occur; elsewhere it is open and entirely free of particulate or spokelike components. The desmotubule is tightly constricted and has no lumen within the sphincters, but between the sphincters it is a convoluted tubule with an open lumen. 2) Plasmodesmata that traverse the walls of chlorenchymatous bundle-sheath cells and mestome-sheath cells. In addition to the presence of sphincters, these plasmodesmata are modified by the presence of suberin lamellae in the walls. Although the plasmodesmata are quite narrow and the lumens of the desmotubules are constricted where they traverse the suberin lamellae, the cytoplasmic sleeves are still discernible and appear to contain substructural components there. 3) Plasmodesmata between parenchymatous cells of the vascular bundles. These plasmodesmata strongly resemble those found in the roots of Azolla, in that their desmotubules are closed for their entire length and their cytoplasmic sleeves appear to contain substructural components for their entire length. The structural variations exhibited by the plasmodesmata of the sugarcane leaf are compared with those proposed for a widely-adopted model of plasmodesmatal structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA