Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Animals (Basel) ; 14(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39061520

RESUMO

The tiger pufferfish (Takifugu rubripes), also known as fugu, has recently suffered from severe C. irritans infections under aquaculture environment, yet the underlying immune mechanisms against the parasite remain poorly understood. In this study, we conducted a comprehensive transcriptome analysis of the gill tissue from infected and uninfected fish using PacBio long-read (one pooled sample each for seriously infected and healthy individuals, respectively) and Illumina short-read (three pools for mildly infected, seriously infected, and healthy individuals, respectively) RNA sequencing technologies. After aligning sequence data to fugu's reference genome, 47,307 and 34,413 known full-length transcripts were identified and profiled in healthy and infected fish, respectively. Similarly, we identified and profiled 1126 and 803 novel genes that were obtained from healthy and infected fish, respectively. Interestingly, we found a decrease in the number of alternative splicing (AS) events and long non-coding RNAs (lncRNAs) after infection with C. irritans, suggesting that they may be involved in the regulation of the immune response in fugu. There were 687 and 1535 differentially expressed genes (DEGs) in moderately and heavily infected fish, respectively, compared to uninfected fish. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that immune-related DEGs in the two comparison groups were mainly enriched in cytokine-cytokine receptor interactions, ECM-receptor interactions, T-cell receptor signaling pathways, Th1 and Th2 cell differentiation, and Th17 cell differentiation pathways. Further analysis revealed that a large number of immune-related genes were downregulated in infected fish relative to uninfected ones, such as CCR7, IL7R, TNFRSF21, CD4, COL2A1, FOXP3B, and ITGA8. Our study suggests that C. irritans is potentially a highly efficient parasite that may disrupt the defense mechanisms of fugu against it. In addition, in combination of short-read RNA sequencing and previous genome-wide association analyses, we identified five key genes (NDUFB6, PRELID1, SMOX, SLC25A4, and DENND1B) that might be closely associated with C. irritans resistance. This study not only provides valuable resources of novel genic transcripts for further research, but also provides new insights into the immune mechanisms underlying C. irritans infection response in farmed fugu.

2.
Genomics ; 116(1): 110781, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38182036

RESUMO

Nile tilapia is one of the most important aquaculture species globally, providing high-quality animal protein for human nutrition and a source of income to sustain the livelihoods of many people in low- and middle-income countries. This species is native to Africa and nowadays farmed throughout the world. However, the genetic makeup of its native populations remains poorly characterized. Additionally, there has been important introgression and movement of farmed (as well as wild) strains connected to tilapia aquaculture in Africa, yet the relationship between wild and farmed populations is unknown in most of the continent. Genetic characterization of the species in Africa has the potential to support the conservation of the species as well as supporting selective breeding to improve the indigenous strains for sustainable and profitable aquaculture production. In the current study, a total of 382 fish were used to investigate the genetic structure, diversity, and ancestry within and between Ugandan Nile tilapia populations from three major lakes including Lake Albert (L. Albert), Lake Kyoga (L. Kyoga) and Lake Victoria (L. Victoria), and 10 hatchery farms located in the catchment regions of these lakes. Our results showed clear genetic structure of the fish sourced from the lakes, with L. Kyoga and L. Albert populations showing higher genetic similarity. We also observed noticeable genetic structure among farmed populations, with most of them being genetically similar to L. Albert and L. Kyoga fish. Admixture results showed a higher (2.55-52.75%) contribution of L. Albert / L. Kyoga stocks to Uganda's farmed fish than the stock from L. Victoria (2.12-28.02%). We observed relatively high genetic diversity across both wild and farmed populations, but some farms had sizable numbers of highly inbred fish, raising concerns about management practices. In addition, we identified a genomic region on chromosome 5, harbouring the key innate immune gene BPI and the key growth gene GHRH, putatively under selection in the Ugandan Nile tilapia population. This region overlaps with the genomic region previously identified to be associated with growth rate in farmed Nile tilapia.


Assuntos
Ciclídeos , Humanos , Animais , Ciclídeos/genética , Uganda , Aquicultura , Cruzamento , Variação Genética
3.
PLoS One ; 18(9): e0285020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37676875

RESUMO

The use of single cell sequencing technologies has exploded over recent years, and is now commonly used in many non-model species. Sequencing nuclei instead of whole cells has become increasingly popular, as it does not require the processing of samples immediately after collection. Here we present a highly effective nucleus isolation protocol that outperforms previously available method in challenging samples in a non-model specie. This protocol can be successfully applied to extract nuclei from a variety of tissues and species.


Assuntos
Salmo salar , Animais , Núcleo Celular/genética , Tecnologia
4.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724757

RESUMO

In this study, we present the first spatial transcriptomic atlas of Atlantic salmon skin using the Visium Spatial Gene Expression protocol. We utilized frozen skin tissue from 4 distinct sites, namely the operculum, pectoral and caudal fins, and scaly skin at the flank of the fish close to the lateral line, obtained from 2 Atlantic salmon (150 g). High-quality frozen tissue sections were obtained by embedding tissue in optimal cutting temperature media prior to freezing and sectioning. Further, we generated libraries and spatial transcriptomic maps, achieving a minimum of 80 million reads per sample with mapping efficiencies ranging from 79.3 to 89.4%. Our analysis revealed the detection of over 80,000 transcripts and nearly 30,000 genes in each sample. Among the tissue types observed in the skin, the epithelial tissues exhibited the highest number of transcripts (unique molecular identifier counts), followed by muscle tissue, loose and fibrous connective tissue, and bone. Notably, the widest nodes in the transcriptome network were shared among the epithelial clusters, while dermal tissues showed less consistency, which is likely attributable to the presence of multiple cell types at different body locations. Additionally, we identified collagen type 1 as the most prominent gene family in the skin, while keratins were found to be abundant in the epithelial tissue. Furthermore, we successfully identified gene markers specific to epithelial tissue, bone, and mesenchyme. To validate their expression patterns, we conducted a meta-analysis of the microarray database, which confirmed high expression levels of these markers in mucosal organs, skin, gills, and the olfactory rosette.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , Transcriptoma , Salmo salar/genética , Perfilação da Expressão Gênica , Pele/metabolismo , Epitélio , Doenças dos Peixes/genética
5.
Genet Sel Evol ; 55(1): 59, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580697

RESUMO

BACKGROUND: Flavobacterium columnare is the pathogen agent of columnaris disease, a major emerging disease that affects rainbow trout aquaculture. Selective breeding using genomic selection has potential to achieve cumulative improvement of the host resistance. However, genomic selection is expensive partly because of the cost of genotyping large numbers of animals using high-density single nucleotide polymorphism (SNP) arrays. The objective of this study was to assess the efficiency of genomic selection for resistance to F. columnare using in silico low-density (LD) panels combined with imputation. After a natural outbreak of columnaris disease, 2874 challenged fish and 469 fish from the parental generation (n = 81 parents) were genotyped with 27,907 SNPs. The efficiency of genomic prediction using LD panels was assessed for 10 panels of different densities, which were created in silico using two sampling methods, random and equally spaced. All LD panels were also imputed to the full 28K HD panel using the parental generation as the reference population, and genomic predictions were re-evaluated. The potential of prioritizing SNPs that are associated with resistance to F. columnare was also tested for the six lower-density panels. RESULTS: The accuracies of both imputation and genomic predictions were similar with random and equally-spaced sampling of SNPs. Using LD panels of at least 3000 SNPs or lower-density panels (as low as 300 SNPs) combined with imputation resulted in accuracies that were comparable to those of the 28K HD panel and were 11% higher than the pedigree-based predictions. CONCLUSIONS: Compared to using the commercial HD panel, LD panels combined with imputation may provide a more affordable approach to genomic prediction of breeding values, which supports a more widespread adoption of genomic selection in aquaculture breeding programmes.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , Genoma , Genótipo , Genômica/métodos , Polimorfismo de Nucleotídeo Único
6.
Front Genet ; 14: 1194266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252666

RESUMO

Genomic selection can accelerate genetic progress in aquaculture breeding programmes, particularly for traits measured on siblings of selection candidates. However, it is not widely implemented in most aquaculture species, and remains expensive due to high genotyping costs. Genotype imputation is a promising strategy that can reduce genotyping costs and facilitate the broader uptake of genomic selection in aquaculture breeding programmes. Genotype imputation can predict ungenotyped SNPs in populations genotyped at a low-density (LD), using a reference population genotyped at a high-density (HD). In this study, we used datasets of four aquaculture species (Atlantic salmon, turbot, common carp and Pacific oyster), phenotyped for different traits, to investigate the efficacy of genotype imputation for cost-effective genomic selection. The four datasets had been genotyped at HD, and eight LD panels (300-6,000 SNPs) were generated in silico. SNPs were selected to be: i) evenly distributed according to physical position ii) selected to minimise the linkage disequilibrium between adjacent SNPs or iii) randomly selected. Imputation was performed with three different software packages (AlphaImpute2, FImpute v.3 and findhap v.4). The results revealed that FImpute v.3 was faster and achieved higher imputation accuracies. Imputation accuracy increased with increasing panel density for both SNP selection methods, reaching correlations greater than 0.95 in the three fish species and 0.80 in Pacific oyster. In terms of genomic prediction accuracy, the LD and the imputed panels performed similarly, reaching values very close to the HD panels, except in the pacific oyster dataset, where the LD panel performed better than the imputed panel. In the fish species, when LD panels were used for genomic prediction without imputation, selection of markers based on either physical or genetic distance (instead of randomly) resulted in a high prediction accuracy, whereas imputation achieved near maximal prediction accuracy independently of the LD panel, showing higher reliability. Our results suggests that, in fish species, well-selected LD panels may achieve near maximal genomic selection prediction accuracy, and that the addition of imputation will result in maximal accuracy independently of the LD panel. These strategies represent effective and affordable methods to incorporate genomic selection into most aquaculture settings.

7.
BMC Genomics ; 24(1): 161, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991327

RESUMO

BACKGROUND: Infectious Salmon Anaemia Virus (ISAV) is an Orthomixovirus that represents a large problem for salmonid aquaculture worldwide. Current prevention and treatment methods are only partially effective. Genetic selection and genome engineering have the potential to develop ISAV resistant salmon stocks. Both strategies can benefit from an improved understanding of the genomic regulation of ISAV pathogenesis. Here, we used single-cell RNA sequencing of an Atlantic salmon cell line to provide the first high dimensional insight into the transcriptional landscape that underpins host-virus interaction during early ISAV infection. RESULTS: Salmon head kidney (SHK-1) cells were single-cell RNA sequenced at 24, 48 and 96 h post-ISAV challenge. At 24 h post infection, cells showed expression signatures consistent with viral entry, with genes such as PI3K, FAK or JNK being upregulated relative to uninfected cells. At 48 and 96 h, infected cells showed a clear anti-viral response, characterised by the expression of IFNA2 or IRF2. Uninfected bystander cells at 48 and 96 h also showed clear transcriptional differences, potentially suggesting paracrine signalling from infected cells. These bystander cells expressed pathways such as mRNA sensing, RNA degradation, ubiquitination or proteasome; and up-regulation of mitochondrial ribosome genes also seemed to play a role in the host response to the infection. Correlation between viral and host genes revealed novel genes potentially key for this fish-virus interaction. CONCLUSIONS: This study has increased our understanding of the cellular response of Atlantic salmon during ISAV infection and revealed host-virus interactions at the cellular level. Our results highlight various potential key genes in this host-virus interaction, which can be manipulated in future functional studies to increase the resistance of Atlantic salmon to ISAV.


Assuntos
Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Salmo salar , Animais , Salmo salar/genética , Isavirus/genética , Regulação para Cima , Linhagem Celular , Análise de Sequência de RNA , Doenças dos Peixes/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/veterinária
8.
Sci Rep ; 13(1): 3019, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810752

RESUMO

Non-synonymous variation (NSV) of protein coding genes represents raw material for selection to improve adaptation to the diverse environmental scenarios in wild and livestock populations. Many aquatic species face variations in temperature, salinity and biological factors throughout their distribution range that is reflected by the presence of allelic clines or local adaptation. The turbot (Scophthalmus maximus) is a flatfish of great commercial value with a flourishing aquaculture which has promoted the development of genomic resources. In this study, we developed the first atlas of NSVs in the turbot genome by resequencing 10 individuals from Northeast Atlantic Ocean. More than 50,000 NSVs where detected in the ~ 21,500 coding genes of the turbot genome, and we selected 18 NSVs to be genotyped using a single Mass ARRAY multiplex on 13 wild populations and three turbot farms. We detected signals of divergent selection on several genes related to growth, circadian rhythms, osmoregulation and oxygen binding in the different scenarios evaluated. Furthermore, we explored the impact of NSVs identified on the 3D structure and functional relationship of the correspondent proteins. In summary, our study provides a strategy to identify NSVs in species with consistently annotated and assembled genomes to ascertain their role in adaptation.


Assuntos
Linguados , Variação Genética , Animais , Linguados/genética , Genoma , Genômica , Genótipo , Análise de Sequência de DNA , Aquicultura
9.
Mol Ecol Resour ; 23(4): 886-904, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36587276

RESUMO

Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 single nucleotide polymorphism variants in the follicle stimulating hormone receptor (fshr) consistent with an XX/XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. The fshr gene displayed differential expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 nonsynonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testis.


Assuntos
Linguados , Receptores do FSH , Feminino , Masculino , Animais , Receptores do FSH/genética , Receptores do FSH/metabolismo , Genoma/genética , Cromossomos , Linguados/genética , Hormônios/metabolismo
10.
Data Brief ; 46: 108809, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36569535

RESUMO

Spinal cord injury (SCI) leads to severe functional deficits. Currently, there are no available pharmacological treatments to promote neurological recovery in SCI patients. Recent work from our group has shown that a baclofen treatment can promote functional recovery after a compression SCI in mice [1]. Here, we provide transcriptomic (RNA-seq) data from adult mouse spinal cords collected 7 days after a compression SCI and baclofen (vs vehicle) administration. The Illumina NovaSeq 6000 platform was used to generate the raw transcriptomic data. In addition, we also present bioinformatic analyses including differential gene expression analysis, enrichment analyses for various functional annotations (gene ontology, KEGG and BioCarta pathways or InterPro domains) and transcription factor targets. The raw RNA-seq data has been uploaded to the NCBI Sequence Read Archive (SRA) database (Bioproject ID PRJNA886048). The data generated from the bioinformatic analyses is contained within the article.

11.
Rev Aquac ; 15(2): 491-535, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504717

RESUMO

Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.

12.
Rev Aquac ; 15(4): 1618-1637, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38505116

RESUMO

Single cell genomics encompasses a suite of rapidly maturing technologies that measure the molecular profiles of individual cells within target samples. These approaches provide a large up-step in biological information compared to long-established 'bulk' methods that profile the average molecular profiles of all cells in a sample, and have led to transformative advances in understanding of cellular biology, particularly in humans and model organisms. The application of single cell genomics is fast expanding to non-model taxa, including aquaculture species, where numerous research applications are underway with many more envisaged. In this review, we highlight the potential transformative applications of single cell genomics in aquaculture research, considering barriers and potential solutions to the broad uptake of these technologies. Focusing on single cell transcriptomics, we outline considerations for experimental design, including the essential requirement to obtain high quality cells/nuclei for sequencing in ectothermic aquatic species. We further outline data analysis and bioinformatics considerations, tailored to studies with the under-characterized genomes of aquaculture species, where our knowledge of cellular heterogeneity and cell marker genes is immature. Overall, this review offers a useful source of knowledge for researchers aiming to apply single cell genomics to address biological challenges faced by the global aquaculture sector though an improved understanding of cell biology.

13.
BMC Genomics ; 23(1): 775, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443659

RESUMO

BACKGROUND: Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus responsible for large losses in Atlantic salmon (Salmo salar) aquaculture. Current available treatments and vaccines are not fully effective, and therefore selective breeding to produce ISAV-resistant strains of Atlantic salmon is a high priority for the industry. Genomic selection and potentially genome editing can be applied to enhance the disease resistance of aquaculture stocks, and both approaches can benefit from increased knowledge on the genomic mechanisms of resistance to ISAV. To improve our understanding of the mechanisms underlying resistance to ISAV in Atlantic salmon we performed a transcriptomic study in ISAV-infected salmon with contrasting levels of resistance to this virus. RESULTS: Three different tissues (gills, head kidney and spleen) were collected on 12 resistant and 12 susceptible fish at three timepoints (pre-challenge, 7 and 14 days post challenge) and RNA sequenced. The transcriptomes of infected and non-infected fish and of resistant and susceptible fish were compared at each timepoint. The results show that the responses to ISAV are organ-specific; an important response to the infection was observed in the head kidney, with up-regulation of immune processes such as interferon and NLR pathways, while in gills and spleen the response was more moderate. In addition to immune related genes, our results suggest that other processes such as ubiquitination and ribosomal processing are important during early infection with ISAV. Moreover, the comparison between resistant and susceptible fish has also highlighted some interesting genes related to ubiquitination, intracellular transport and the inflammasome. CONCLUSIONS: Atlantic salmon infection by ISAV revealed an organ-specific response, implying differential function during the infection. An immune response was observed in the head kidney in these early timepoints, while gills and spleen showed modest responses in comparison. Comparison between resistance and susceptible samples have highlighted genes of interest for further studies, for instance those related to ubiquitination or the inflammasome.


Assuntos
Isavirus , Salmo salar , Animais , Rim Cefálico , Salmo salar/genética , Baço , Brânquias , Transcriptoma , Inflamassomos
14.
Front Mol Neurosci ; 15: 1034254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340690

RESUMO

Chemosensory cues are vital for social and sexual behaviours and are primarily detected and processed by the vomeronasal system (VNS), whose plastic capacity has been investigated in mice. However, studying chemosensory plasticity outside of laboratory conditions may give a more realistic picture of how the VNS adapts to a changing environment. Rabbits are a well-described model of chemocommunication since the discovery of the rabbit mammary pheromone and their vomeronasal organ (VNO) transcriptome was recently characterised, a first step to further study plasticity-mediated transcriptional changes. In this study, we assessed the plastic capacity of the rabbit male and female VNO under sex-separation vs. sex-combined scenarios, including adults and juveniles, to determine whether the rabbit VNO is plastic and, if so, whether such plasticity is already established at early stages of life. First, we characterised the number of differentially expressed genes (DEGs) between the VNO of rabbit male and female under sex-separation and compared it to sex-combined individuals, both in adults and juveniles, finding that differences between male and female were larger in a sex-separated scenario. Secondly, we analysed the number of DEGs between sex-separated and sex-combined scenarios, both in males and females. In adults, both sexes showed a high number of DEGs while in juveniles only females showed differences. Additionally, the vomeronasal receptor genes were strikingly downregulated in sex-separated adult females, whereas in juveniles upregulation was shown for the same condition, suggesting a role of VRs in puberty onset. Finally, we described the environment-modulated plastic capacity of genes involved in reproduction, immunity and VNO functional activity, including G-protein coupled receptors. Our results show that sex-separation induces sex- and stage-specific gene expression differences in the VNO of male and female rabbit, both in adults and juveniles. These results bring out for the first time the plastic capacity of the rabbit VNO, supporting its functional adaptation to specifically respond to a continuous changing environment. Finally, species-specific differences and individual variability should always be considered in VNO studies and overall chemocommunication research.

15.
Sci Rep ; 12(1): 16971, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216849

RESUMO

Shell color shows broad variation within mollusc species and despite information on the genetic pathways involved in shell construction and color has recently increased, more studies are needed to understand its genetic architecture. The common cockle (Cerastoderma edule) is a valuable species from ecological and commercial perspectives which shows important variation in shell color across Northeast Atlantic. In this study, we constructed a high-density genetic map, as a tool for screening common cockle genome, which was applied to ascertain the genetic basis of color variation in the species. The consensus genetic map comprised 19 linkage groups (LGs) in accordance with the cockle karyotype (2n = 38) and spanned 1073 cM, including 730 markers per LG and an inter-marker distance of 0.13 cM. Five full-sib families showing segregation for several color-associated traits were used for a genome-wide association study and a major QTL on chromosome 13 associated to different color-traits was detected. Mining on this genomic region revealed several candidate genes related to shell construction and color. A genomic region previously reported associated with divergent selection in cockle distribution overlapped with this QTL suggesting its putative role on adaptation.


Assuntos
Exoesqueleto , Cardiidae , Cor , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Ligação Genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
16.
Animal ; 16(10): 100642, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36183431

RESUMO

Aquaculture production comprises a diverse range of species, geographies, and farming systems. The application of genetics and breeding technologies towards improved production is highly variable, ranging from the use of wild-sourced seed through to advanced family breeding programmes augmented by genomic techniques. This technical variation exists across some of the most highly produced species globally, with several of the top ten global species by volume generally lacking well-managed breeding programmes. Given the well-documented incremental and cumulative benefits of genetic improvement on production, this is a major missed opportunity. This short review focusses on (i) the status of application of selective breeding in the world's most produced aquaculture species, (ii) the range of genetic technologies available and the opportunities they present, and (iii) a future outlook towards realising the potential contribution of genetic technologies to aquaculture sustainability and global food security.


Assuntos
Aquicultura , Melhoramento Vegetal , Animais , Aquicultura/métodos , Genoma , Genômica/métodos , Seleção Artificial
17.
Genomics ; 114(6): 110503, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244592

RESUMO

Salmon rickettsial septicaemia (SRS), caused by the bacteria Piscirickettsia salmonis (P. salmonis), is responsible for significant mortality in farmed Atlantic salmon in Chile. Currently there are no effective treatments or preventive measures for this disease, although genetic selection or genome engineering to increase salmon resistance to SRS are promising strategies. The accuracy and efficiency of these strategies are usually influenced by the available biological background knowledge of the disease. The aim of this study was to investigate DNA methylation changes in response to P. salmonis infection in the head kidney and liver tissue of Atlantic salmon, and the interaction between gene expression and DNA methylation in the same tissues. The head kidney and liver methylomes of 66 juvenile salmon were profiled using reduced representation bisulphite sequencing (RRBS), and compared between P. salmonis infected animals (3 and 9 days post infection) and uninfected controls, and between SRS resistant and susceptible fish. Methylation was correlated with matching RNA-Seq data from the same animals, revealing that methylation in the first exon leads to an important repression of gene expression. Head kidney methylation showed a clear response to the infection, associated with immunological processes such as actin cytoskeleton regulation, phagocytosis, endocytosis and pathogen associated pattern receptor signaling. Our results contribute to the growing understanding of the role of methylation in regulation of gene expression and response to infectious diseases and could inform the incorporation of epigenetic markers into genomic selection for disease resistant and the design of diagnostic epigenetic markers to better manage fish health in salmon aquaculture.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Metilação de DNA , Genômica , Epigenômica
18.
Int. j. odontostomatol. (Print) ; 15(4): 997-1004, dic. 2021. tab, ilus
Artigo em Espanhol | LILACS | ID: biblio-1385854

RESUMO

Se ha sugerido que el uso de antisépticos orales podría reducir la carga viral del virus SARS-CoV-2 en los pacientes durante la atención dental, pero sin evidencia que avale su efectividad. Dada la vulnerabilidad del virus a la oxidac ión, se ha recomendado el uso de colutorios que contengan agentes oxidantes como la povidona yodada. El objetivo de la presente revisión fue determinar la efectividad del uso de povidona yodada como antiséptico oral en la disminución de la carga viral del virus SARS-CoV-2. Se realizó una búsqueda bibliográfica en PubMed, Biblioteca Virtual en Salud, SciELO, Web of Science y EBSCO host. Se incluyeron estudios clínicos en pacientes con COVID-19 y estudios in vitro con cepas del virus que utilizaran colutorios de povidona yodada como forma de intervención, publicados entre enero del 2019 y enero del 2021. La selección de los artículos se realizó en dos etapas por dos autores de manera independiente. Luego de eliminar los artículos duplicados, se mantuvieron 53 referencias. Finalmente se incluyeron 2 estudios in vivo y 5 estudios in vitro para la revisión cualitativa. En los estudios in vitro, todas las concentraciones de povidona yodada evidenciaron una actividad virucida eficaz en los distintos tiempos de exposición, donde la mínima concentración efectiva correspondió a 0,5 % en 15 segundos. Los estudios in vivo presentaron resultados positivos hacia el uso de povidona yodada, pero con tamaños muestrales pequeños y una gran heterogeneidad en su metodología. En conclusión el uso profiláctico de povidona yodada como colutorio contra el virus SARS-CoV-2 es respaldado por los trabajos in vitro, con tiempos de aplicación fácilmente realizables en la atención dental, pero se requiere de un mayor número de ensayos controlados aleatorizados para comprobar su efectividad en la práctica clínica.


It has been suggested that the use of oral antiseptics could reduce the viral load of SARS-CoV-2 virus in patients during dental care, but without evidence to support its effectiveness. The objective of this study was to determine the effectiveness of povidone iodine mouthwash in reducing the viral load of SARS-CoV-2 virus. A literature search was conducted in PubMed, Biblioteca Virtual enSalud, SciELO, Web of Science and EBSCOhost. Clinical studies in patients with COVID-19 or in vitro studies with SARS-CoV-2 strains that used povidone-iodine mouthwash as a form of intervention, published between January 2019 and January 2021, were included. The selection of articles was carried out in two phases by two authors independently. After removing duplicate articles, 53 references were kept. Finally, 2 in vivo studies and 5 in vitro studies were included for the qualitative review. In the in vitro studies, all concentrations of povidone iodine showed effective virucidal activity at the different exposure times, where the minimum effective concentration corresponded to 0.5 % in 15 seconds. In vivo studies showed positive results towards the use of povidone iodine, but with small sample sizes and great heterogeneity in their methodology. The prophylactic use of povidone iodine mouthwash against the SARS-CoV- 2 virus is supported by in vitro studies, with application times easily achievable in dental care, but a large number of randomized controlled trials are required to verify its effectiveness in clinical practice.


Assuntos
Humanos , Povidona-Iodo/uso terapêutico , COVID-19/prevenção & controle , Técnicas In Vitro , Carga Viral , Antissépticos Bucais/uso terapêutico
20.
Genomics ; 113(6): 3842-3850, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547402

RESUMO

Genetic resistance to infectious pancreatic necrosis virus (IPNV) in Atlantic salmon is a rare example of a trait where a single locus (QTL) explains almost all of the genetic variation. Genetic marker tests based on this QTL on salmon chromosome 26 have been widely applied in selective breeding to markedly reduce the incidence of the disease. In the current study, whole genome sequencing and functional annotation approaches were applied to characterise genes and variants in the QTL region. This was complemented by an analysis of differential expression between salmon fry of homozygous resistant and homozygous susceptible genotypes challenged with IPNV. These analyses pointed to the NEDD-8 activating enzyme 1 (nae1) gene as a putative functional candidate underlying the QTL effect. The role of nae1 in IPN resistance was further assessed via CRISPR-Cas9 knockout of the nae1 gene and chemical inhibition of the nae1 protein activity in Atlantic salmon cell lines, both of which resulted in highly significant reduction in productive IPNV replication. In contrast, CRISPR-Cas9 knockout of a candidate gene previously purported to be a cellular receptor for the virus (cdh1) did not have a major impact on productive IPNV replication. These results suggest that nae1 is the causative gene underlying the major QTL affecting resistance to IPNV in salmon, provide further evidence for the critical role of neddylation in host-pathogen interactions, and highlight the value in combining high-throughput genomics approaches with targeted genome editing to understand the genetic basis of disease resistance.


Assuntos
Doenças dos Peixes , Vírus da Necrose Pancreática Infecciosa , Salmo salar , Animais , Doenças dos Peixes/genética , Marcadores Genéticos , Locos de Características Quantitativas , Salmo salar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA