Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432908

RESUMO

Currently, the use of biostimulants in agriculture is a tool for mitigating certain environmental stresses. Brown algae extracts have become one of the most important categories of biostimulants in agriculture, and are derived from the different uses and positive results obtained under optimal and stressful conditions. This study aimed to examine the efficacy of a foliar application of a hydroalcoholic extract of Sargassum spp. and two controls (a commercial product based on Ascophyllum nodosum and distilled water) with regard to growth, the antioxidant system, and the expression of defense genes in tomato seedlings grown in nonsaline (0 mM NaCl) and saline (100 mM NaCl) conditions. In general, the results show that the Sargassum extract increased the growth of the seedlings at the end of the experiment (7.80%) compared to the control; however, under saline conditions, it did not modify the growth. The Sargassum extract increased the diameter of the stem at the end of the experiment in unstressed conditions by 14.85% compared to its control and in stressful conditions by 16.04% compared to its control. Regarding the accumulation of total fresh biomass under unstressed conditions, the Sargassum extract increased it by 19.25% compared to its control, and the accumulation of total dry biomass increased it by 18.11% compared to its control. Under saline conditions, the total of fresh and dry biomass did not change. Enzymatic and nonenzymatic antioxidants increased with NaCl stress and the application of algal products (Sargassum and A. nodosum), which was positively related to the expression of the defense genes evaluated. Our results indicate that the use of the hydroalcoholic extract of Sargassum spp. modulated different physiological, metabolic, and molecular processes in tomato seedlings, with possible synergistic effects that increased tolerance to salinity.

2.
Plants (Basel) ; 10(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34685819

RESUMO

Plants from arid zones of Mexico are an interesting source of phytochemicals that exhibit a large number of biological properties. In this context, Rhus microphylla (Rm) and Myrtillocactus geometrizans (Mg) fruits have been used as folk remedies and to make traditional foods, respectively; however, studies on their composition and bioactivity are limited. Thus, the objective of this work was to evaluate the yields, phenolic composition, and bioactive properties (scavenging and reducing capacities, antiproliferative, and antifungal) of aqueous and hydroalcohol extracts of Rm and Mg fruits obtained by conventional agitation and ohmic heating (OH). The results showed that the Rm fruit extracts had the highest total phenolic content (TPC) values and the strongest scavenging and reducing capacities compared to those of Mg fruits, being characterized by the presence of gallic acid, while the composition of the Mg extracts varied with respect to the extraction conditions used. Regarding antifungal activity in vitro against two phytopathogenic fungi, Rhizopus stolonifer and Fusarium oxysporum, the hydroalcohol extracts obtained by conventional agitation of both plants (RmH-C and MgH-C) showed the best inhibitory effect, respectively. Interestingly, none of the extracts under study presented cytotoxicity against the noncancerous ARPE-19 cell line, while three extracts of Rm fruit exhibited a moderate antiproliferative activity against HeLa (cancerous) cell line. These findings reveal for the first time the potential of Rm and Mg fruits as a new source of bioactive compounds for future industrial applications.

3.
Int J Food Sci ; 2021: 9936722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568485

RESUMO

Agricultural vegetable products always seek to meet the growing demands of the population; however, today, there are great losses in supply chains and in the sales stage. Looking for a longer shelf life of fruits and vegetables, postharvest technologies have been developed that allow an adequate transfer from the field to the point of sale and a longer shelf life. One of the most attractive methods to improve quality and nutritional content and extend shelf life of fruits and vegetables is the incorporation of bioactive compounds with postharvest technologies. These compounds are substances that can prevent food spoilage and the proliferation of harmful microorganisms and, in some cases, act as a dietary supplement or provide health benefits. This review presents an updated overview of the knowledge about bioactive compounds derived from plant residues, the techniques most used for obtaining them, their incorporation in edible films and coatings, and the methods of microbial inhibition.

4.
Bioresour Technol ; 329: 124935, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33713900

RESUMO

Sargassum spp is an invasive macroalgae and an alternative feedstock for bioethanol production. Sargassum spp biomass was subjected to high-pressure technology for biomass fractionation under different operating conditions of temperature and residence time to obtain glucan enriched pretreated solids (32.22 g/100 g of raw material). Enzyme hydrolysis process at high pretreated solid loading (13%, w/v) and enzyme loading of 10 FPU/g of glucan was performed, obtaining 43.01 g/L of glucose corresponding to a conversion yield of 92.12%. Finally, a pre-simultaneous saccharification and fermentation strategy (PSSF) was performed to produce bioethanol. This operational strategy produced 45.66 g/L of glucose in the pre-saccharification stage, and 18.14 g/L of bioethanol was produced with a glucose to bioethanol conversion yield of 76.23%. The development of this process highlights the feasibility of bioethanol production from macroalgal biomass in the biorefinery concept.


Assuntos
Sargassum , Biocombustíveis , Biomassa , Etanol , Fermentação , Hidrólise , Tecnologia
5.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766644

RESUMO

Tomato is one of the most economically important vegetables worldwide and is constantly threatened by various biotic and abiotic stress factors reducing the quality and quantity in the production of this crop. As an alternative to mitigate stress in plants, carbon nanomaterials (CNMs) have been used in agricultural areas. Therefore, the objective of the present work was to evaluate the antioxidant responses of tomato seedlings to the application via foliar and drench of carbon nanotubes (CNTs) and graphene (GP). Different doses (10, 50, 100, 250, 500, and 1000 mg L-1) and a control were evaluated. The results showed that the fresh and dry root weight increased with the application of CNMs. Regarding the antioxidant responses of tomato seedlings, the application of CNMs increased the content of phenols, flavonoids, ascorbic acid, glutathione, photosynthetic pigments, activity of the enzyme's ascorbate peroxidase, glutathione peroxidase, catalase, and phenylalanine ammonia lyase as well as the content of proteins. Therefore, the use of carbon-based nanomaterials could be a good alternative to induce tolerance to different stress in tomato crop.


Assuntos
Antioxidantes/metabolismo , Grafite , Nanotubos de Carbono/química , Plântula/metabolismo , Solanum lycopersicum/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Grafite/química , Grafite/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA