Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Obesity (Silver Spring) ; 32(5): 1023-1032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515392

RESUMO

OBJECTIVE: Dichlorodiphenyldichloroethylene (DDE), an obesogen accumulating in adipose tissue, is released into circulation with weight loss, although its impact is underexplored among adolescents. We tested the association using an integrative translational approach of epidemiological analysis among adolescents with obesity and in vitro measures exploring the impact of DDE on adipogenesis via preadipocytes. METHODS: We included 63 participants from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort. We assessed 4,4'-DDE in visceral adipose tissue at surgery and BMI and waist circumference at surgery and 0.5, 1, 3, and 5 years after. We conducted longitudinal analysis to estimate the interaction on weight loss between DDE and time since surgery. In vitro analysis quantified adipogenic differentiation in commercial human preadipocytes exposed to 4,4'-DDE via fluorescent staining and imaging. RESULTS: A dose-response relationship was observed, with the low-exposure group having a greater reduction in BMI during the first year compared to higher-exposure groups and showing smaller regains compared to higher-exposure groups after the first year. In vitro analysis of preadipocytes treated with 4,4'-DDE during adipogenic differentiation for 12 days showed a concentration-dependent increase in lipid accumulation. CONCLUSIONS: DDE could contribute to weight trajectory among adolescents undergoing bariatric surgery, potentially mediated via promoted adipogenesis in preadipocytes.


Assuntos
Adipogenia , Cirurgia Bariátrica , Índice de Massa Corporal , Diclorodifenil Dicloroetileno , Gordura Intra-Abdominal , Redução de Peso , Humanos , Adolescente , Masculino , Feminino , Gordura Intra-Abdominal/metabolismo , Estudos Longitudinais , Obesidade Infantil/metabolismo , Adipócitos/metabolismo , Estudos de Coortes , Circunferência da Cintura
2.
Prog Oceanogr ; 218: 1-15, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38269259

RESUMO

Achieving gender equity is a long-standing and ubiquitous challenge in marine science. Creating equitable experiences for all genders in marine science requires recognizing scientists' intersectional identities, and how this leads to unique lived experiences of privilege and marginalization. One approach to increase equitable experiences for women in marine science is to create affinity groups where women can learn from each other, share their experiences, and provide support and mentorship. The Society for Women in Marine Science (SWMS) is one such organization, founded to amplify the work of early career women in marine science and create community, through events such as full-day symposium events. This study investigates the experiences of symposium attendees for four events held from 2018 through 2020, as reported in pre- and post-symposium surveys. We used quantitative analysis of the open-ended survey questions to examine the demographics of attendees and their fields of study. Qualitative thematic analysis identified the most effective aspects of the symposia, areas of logistical and content improvement for future symposia, and emphasized the unique challenges women in marine science experience. The majority of symposium attendees were white graduate students. Nearly all attendees identified as women, with a small number of men and non-binary individuals. Symposia attendees enjoyed opportunities for professional development and interactions with colleagues across career stages. We present recommendations for continuing to foster a sense of belonging in marine science and STEM more broadly, both specific to SWMS and transferable actions that can be applied for other affinity groups. These suggestions include empathetic event logistics, continual democratic evaluation, identity reflexivity among group leaders, and professional development activities targeted towards the unique needs of the affinity group. The positive responses received from SWMS's adaptive integration of survey results into symposia demonstrate that incorporating these recommendations and findings will help create an inclusive wave in marine science.

3.
Front Mar Sci ; 82022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36248700

RESUMO

Limited work to date has examined plastic ingestion in highly migratory seabirds like Great Shearwaters (Ardenna gravis) across the their entire migratory range, although this species is prone to ingest plastic as a wide-ranging procellariiform. We examined 217 Great Shearwaters obtained from 2008-2019 at multiple locations spanning their yearly migration cycle across the Northwest and South Atlantic to assess accumulation of ingested plastic as well as trends over time and between locations. A total of 2,328 plastic fragments were documented in the ventriculus portion of the gastrointestinal tract, with an average of 9 plastic fragments per bird. The mass, count, and frequency of plastic occurrence (FO) varied by location, with higher plastic burdens but lower FO in South Atlantic individuals from the breeding colonies. No fragments of the same size or morphology were found in the primary forage fish prey, the sand lance, (Ammodytes spp., n = 202) that supports Great Shearwaters in Massachusetts Bay, USA, suggesting the birds directly ingest the bulk of their plastic loads rather than accumulating via trophic transfer. Fourier-transform infrared spectroscopy indicated that low- and high-density polyethylene were the most common polymers ingested, within all years and locations. Individuals from the South Atlantic contained a higher proportion of larger plastic items and fragments compared to juveniles and non-breeding adults from the NW Atlantic, possibly due to increased use of remote, pelagic areas subject to reduced inputs of smaller, more diverse, and potentially less buoyant plastics found adjacent to coastal margins. Different signatures of polymer type, size, and category between similar life stages at different locations suggests rapid turnover of ingested plastics commensurate with migratory stage and location, though more empirical evidence is needed to ground-truth this hypothesis. This work is the first to comprehensively measure the accumulation of ingested plastics by Great Shearwaters over the last decade and across multiple locations spanning their yearly trans-equatorial migration cycle, and underscores their utility as sentinels of plastic pollution in Atlantic ecosystems.

4.
Environ Pollut ; 300: 118963, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134426

RESUMO

The deployment of aqueous film forming foams (AFFF) used for firefighting during emergencies and training often releases per- and polyfluoroalkyl substances (PFAS) into the environment. In October 2018, first responders in Providence, RI, USA applied an AFFF during a fuel spill. Due to the proximity of the incident to the upper reaches of Narragansett Bay (NB), an unknown quantity of gasoline and AFFF entered the estuary via surface runoff and stormwater drains. Water samples near the spill were collected approximately 15 h after the incident and analyzed for 24 PFAS. Minor increases in measured PFAS concentrations were observed relative to pre- and post-spill samples at monitoring sites near the incident, except 6:2-fluorotelomer sulfonate (6:2-FTS) that peaked post-spill (max 311 ng/L). After performing the total oxidizable precursor (TOP) assay on water samples and the AFFF concentrate, significant increases in perfluorocarboxylic acids (PFCAs) were observed. One compound, 6:2 fluorotelomer mercaptoalkylamido sulfonate (6:2-FTSAS), was identified as a major component of the AFFF used. Peak areas of 6:2-FTSAS and the degradation product 6:2-FTSAS-sulfoxide corresponded to observed increases in the TOP assay results and were useful as tracers of AFFF in surrounding waters. Elevated levels of PFAS at the time of sampling were limited to a confined area of the Providence River due to river flow and tidal action. Observed concentrations were also compared to hydrodynamic model results, and results confirmed rapid dissipation of AFFF components with distance from the spill. However, modeled results did not capture possible secondary releases of AFFF from local municipal stormwater and sewer infrastructure, as observational data suggest. The multiple lines of evidence of PFAS present in surface waters permitted a better assessment of the potential environmental impacts from products such as AFFF for which the chemical composition is largely unknown.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Estuários , Fluorocarbonos/análise , Rios , Água , Poluentes Químicos da Água/análise
5.
Curr Pollut Rep ; 8(1): 1-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35004129

RESUMO

The exposome, which is defined as the cumulative effect of environmental exposures and corresponding biological responses, aims to provide a comprehensive measure for evaluating non-genetic causes of disease. Operationalization of the exposome for environmental health and precision medicine has been limited by the lack of a universal approach for characterizing complex exposures, particularly as they vary temporally and geographically. To overcome these challenges, passive sampling devices (PSDs) provide a key measurement strategy for deep exposome phenotyping, which aims to provide comprehensive chemical assessment using untargeted high-resolution mass spectrometry for exposome-wide association studies. To highlight the advantages of silicone PSDs, we review their use in population studies and evaluate the broad range of applications and chemical classes characterized using these samplers. We assess key aspects of incorporating PSDs within observational studies, including the need to preclean samplers prior to use to remove impurities that interfere with compound detection, analytical considerations, and cost. We close with strategies on how to incorporate measures of the external exposome using PSDs, and their advantages for reducing variability in exposure measures and providing a more thorough accounting of the exposome. Continued development and application of silicone PSDs will facilitate greater understanding of how environmental exposures drive disease risk, while providing a feasible strategy for incorporating untargeted, high-resolution characterization of the external exposome in human studies.

6.
Sci Total Environ ; 803: 150110, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525704

RESUMO

Identifying sources of exposure to chemical stressors is difficult when both target organisms and stressors are highly mobile. While previous studies have demonstrated that populations of some organisms proximal to urban centers may display increased burdens of human-created chemicals compared to more distal populations, this relationship may not be universal when applied to organisms and stressors capable of transboundary movements. We examined eggs of brown pelicans (Pelecanus occidentalis), a nearshore seabird with daily movements ranging from local to 50 km and annual migrations ranging from year-round residency to 1500 km. Thirty-six eggs from three breeding colonies located at increasing distances to a major urban center (Charleston, South Carolina, USA) were analyzed for concentrations of per- and polyfluoroalkyl substances (PFAS). Areas of high use for each colony during the breeding season were also assessed via the tracking of adult pelicans from each colony using GPS-PTT satellite transmitters and overlapped with measures of relative urbanization via land cover data. We report potentially significant ∑PFAS concentrations in the eggs of pelicans (175.4 ± 120.1 ng/g w wt. SD), driven largely by linear perfluorooctane sulfonate (n-PFOS) (48-546 ng/g w wt.). Residues of the precursor compound perfluorooctane sulfonamide (FOSA) were also present in pelican eggs, suggesting continued exposure of local wildlife beyond implemented phaseouts of some PFAS. For most analytes, egg concentrations did not exhibit a significant spatial structure despite some differentiation in high-use areas unlike similar data for another regional apex predator, the bottlenose dolphin (Tursiops truncatus). We suggest that the partially migratory nature of brown pelicans during the non-breeding season, combined with daily ranges that may extend to 50 km from local point sources, may have homogenized exposure across individuals. Charleston likely remains a major source for PFAS in the overall region, however, given the high concentrations observed as well as known releases of PFAS in the nearshore environment.


Assuntos
Ácidos Alcanossulfônicos , Golfinho Nariz-de-Garrafa , Fluorocarbonos , Animais , Aves , Cruzamento , Ovos/análise , Monitoramento Ambiental , Fluorocarbonos/análise
7.
Environ Sci Technol Lett ; 8(6): 457-462, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34527758

RESUMO

Of the thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, few have been investigated in detail. In this study, we analyzed 36 legacy and emerging PFAS in multiple seabird tissues collected from individuals from Massachusetts Bay, Narragansett Bay and the Cape Fear River Estuary. PFOS was the dominant compound across multiple tissues, while long-chain perfluorinated carboxylic acids (PFCAs) dominated in brain (mean = 44% of total concentrations). Emerging perfluoroalkyl ether acids (PFEAs)-Nafion byproduct-2 and PFO5DoDA - were detected in greater than 90% of tissues in birds obtained from a nesting region downstream from a major fluorochemical production site. Compound ratios, relative body burden calculations, and electrostatic surface potential calculations were used to describe partitioning behavior of PFEAs in different tissues. Novel PFEAs preferentially partition into blood compared to liver, and were documented in brain for the first time. PFO5DoDA showed a reduced preference for brain compared to PFCAs and Nafion BP2. These results suggest future monitoring efforts and toxicological studies should focus on novel PFAS and long-chain PFCAs in multiple tissues beyond liver and blood, while exploring the unique binding mechanisms driving uptake of multi-ether PFEAs.

8.
Environ Sci Nano ; 8(10): 2894-2907, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35360702

RESUMO

Aquatic contamination by per- and polyfluorinated alkyl substances (PFAS) has attracted global attention due to their environmental and health concerns. Current health advisories and surface water regulatory limits require PFAS detection in the parts per trillion (ppt) range. One way to achieve those low detection limits is to use a reliable passive sampling-based monitoring tool for PFAS, as exists for numerous nonpolar persistent organic pollutants. Here we introduce a new graphene-based hydrogel monolith and describe its synthesis, chemical functionalization, property characterization, and testing as a PFAS equilibrium passive sampler. The graphene monoliths were self-assembled by hydrothermal treatment from graphene oxide (GO) aqueous dispersions to produce free standing cylinders of ~563 mm3 volume consisting of ~4 wt-% thin-walled porous graphene and ~96 wt-% water. The uptake of 23 PFAS was measured on the as-produced monoliths, and equilibrium partition coefficients (KSW), were derived for longer chain (C≥8) perfluoroalkyl acids (PFAA) and neutral precursors such as sulfonamides (log KSW range 1.9 - 3.6). To increase the KSW for shorter chain PFAA, the monoliths were chemically modified by a new diazonium-based grafting reaction that introduces positive surface charge without damage to the graphenic backbone. Introduction of benzylamine moieties through the diazonium intermediate switches zeta potential at pH 7 from -45mV (as-produced graphene) to + 5mV. This modification increased the sorption of short and middle chain PFAA by ten-fold (e.g. log KSW for PFBA increased from 1.3 to 2.2), thereby improving the functionality of the passive sampler device for a wider range of PFAS. Field deployments demonstrated that the graphene monoliths were capable of detecting key PFAS in the Delaware River.

9.
Environ Sci Technol ; 54(20): 12938-12948, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32894676

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic, globally distributed chemicals. Legacy PFAS, including perfluorooctane sulfonate (PFOS), have been regularly detected in marine fauna but little is known about their current levels or the presence of novel PFAS in seabirds. We measured 36 emerging and legacy PFAS in livers from 31 juvenile seabirds from Massachusetts Bay, Narragansett Bay, and the Cape Fear River Estuary (CFRE), United States. PFOS was the major legacy perfluoroalkyl acid present, making up 58% of concentrations observed across all habitats (range: 11-280 ng/g). Novel PFAS were confirmed in chicks hatched downstream of a fluoropolymer production site in the CFRE: a perfluorinated ether sulfonic acid (Nafion byproduct 2; range: 1-110 ng/g) and two perfluorinated ether carboxylic acids (PFO4DA and PFO5DoDA; PFO5DoDA range: 5-30 ng/g). PFOS was inversely associated with phospholipid content in livers from CFRE and Massachusetts Bay individuals, while δ 13C, an indicator of marine versus terrestrial foraging, was positively correlated with some long-chain PFAS in CFRE chick livers. There is also an indication that seabird phospholipid dynamics are negatively impacted by PFAS, which should be further explored given the importance of lipids for seabirds.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Animais , Aves , Monitoramento Ambiental , Fluorocarbonos/análise , Humanos , Massachusetts , Rios , Ácidos Sulfônicos/análise , Estados Unidos , Poluentes Químicos da Água/análise
10.
ACS Omega ; 3(6): 6595-6604, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023953

RESUMO

Polybrominated diphenyl ethers (PBDEs) are "emerged" contaminants that were produced and used as flame retardants in numerous consumer and industrial applications for decades until banned. They remain ubiquitously present in the environment today. Here, a unique set of >200 biotic samples from the Antarctic was analyzed for PBDEs, including phytoplankton, krill, fish, and fur seal milk, spanning several sampling seasons over 14 years. PBDE-47 and -99 were the dominant congeners determined in all samples, constituting >60% of total PBDEs. A temporal trend was observed for ∑7PBDE concentrations in fur seal milk, where concentrations significantly increased (R2 = 0.57, p < 0.05) over time (2000-2014). Results for krill and phytoplankton also suggested increasing PBDE concentrations over time. Trends of PBDEs in fur seal milk of individual seals sampled 1 or more years apart showed no clear temporal trends. Overall, there was no indication of PBDEs decreasing in Antarctic biota yet, whereas numerous studies have reported decreasing trends in the northern hemisphere. Similar PBDE concentrations in perinatal versus nonperinatal milk implied the importance of local PBDE sources for bioaccumulation. These results indicate the need for continued assessment of contaminant trends, such as PBDEs, and their replacements, in Antarctica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA