Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Curr Osteoporos Rep ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914730

RESUMO

PURPOSE OF REVIEW: This review summarizes the recently published scientific evidence regarding the role of efferocytosis in bone dynamics and skeletal health. RECENT FINDINGS: Several types of efferocytes have been identified within the skeleton, with macrophages being the most extensively studied. Efferocytosis is not merely a 'clean-up' process vital for maintaining skeletal homeostasis; it also plays a crucial role in promoting resolution pathways and orchestrating bone dynamics, such as osteoblast-osteoclast coupling during bone remodeling. Impaired efferocytosis has been associated with aging-related bone loss and various skeletal pathologies, including osteoporosis, osteoarthritis, rheumatoid arthritis, and metastatic bone diseases. Accordingly, emerging evidence suggests that targeting efferocytic mechanisms has the potential to alleviate these conditions. While efferocytosis remains underexplored in the skeleton, recent discoveries have shed light on its pivotal role in bone dynamics, with important implications for skeletal health and pathology. However, there are several knowledge gaps and persisting technical limitations that must be addressed to fully unveil the contributions of efferocytosis in bone.

2.
J Cell Mol Med ; 28(1): e18029, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929757

RESUMO

The effect of preosteoblast-derived exosomes on bone marrow macrophages (BMMΦ) and calvarial osteoblasts (cOB) was evaluated in vitro, and bone formation studies were performed in vivo in mice. Preosteoblastic MC3T3-E1 clone 4 (MC4) cell-derived exosomes (MC4exo) were characterized with particle tracking, transmission electron microscopy and western blot analysis to validate size, number, shape and phenotypic exosome markers. Exosomes pre-labelled with PKH67 were incubated with BMMΦ and phagocytosis of exosomes was confirmed. To examine the effect of MC4exo on macrophage polarization, BMMΦ were treated with MC4exo and the expression of pro- and anti-inflammatory cytokines was determined by qPCR. MC4exo treatment upregulated mRNA expression of Cd86, Il1ß, Ccl2, Rankl and Nos, and downregulated Cd206, Il10 and Tnfα, suggesting a shift towards pro-inflammatory 'M1-like' macrophage polarization. Combination of RANKL and MC4exo increased osteoclast differentiation of BMMΦ in comparison to RANKL alone as analysed by TRAP staining. MC4exo treatment showed no significant effect on calvarial osteoblast mineralization. For in vivo studies, intratibial inoculation of MC4exo (2 × 109 particles in PBS, n = 12) and vehicle control (PBS only, n = 12) was performed in C57Bl/6 mice (8 weeks, male). Micro-CT analyses of the trabecular and cortical bone compartments were assessed at 4 weeks post-injection. Tibial sections were stained for TRAP activity to determine osteoclast presence and immunofluorescence staining was performed to detect osteocalcin (Ocn), osterix (Osx) and F4/80 expression. Intratibial inoculation of MC4exo increased the diaphyseal bone mineral density and trabecular bone volume fraction due to increased trabecular number. This increase in bone was accompanied by a reduction in bone marrow macrophages and osteoclasts at the experimental endpoint. Together, these findings suggest that preosteoblast-derived exosomes enhanced bone formation by influencing macrophage responses.


Assuntos
Exossomos , Masculino , Animais , Camundongos , Osso e Ossos , Osteoclastos/metabolismo , Macrófagos/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular
3.
J Hand Surg Am ; 49(1): 35-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952144

RESUMO

PURPOSE: Patient-reported outcome measures intend to capture patients' perspectives on their health status. However, the patient-perceived applicability of many of these patient-reported outcome measures is unknown. We hypothesized that patients experiencing greater upper extremity disability and greater pain interference would be more likely to report that the Quick Disabilities of the Arm, Shoulder, and Hand questionnaire (QuickDASH) survey content is responsive to their daily lives and goals in seeking surgical care. METHODS: Adult preoperative hand surgery patients at a single tertiary academic center were recruited prospectively. QuickDASH, Patient-Reported Outcomes Measurement Information System Pain Interference computerized-adaptive-testing, and the Godin Leisure-Time Exercise Questionnaire (GLTEQ)-a validated adult physical activity level metric-data were collected. The following two Likert response questions were also asked: question (1) "How applicable is the above questionnaire to your treatment goals for your upper extremity condition?" and question (2) "How applicable is the overall questionnaire to your daily life?" Multivariable binary logistic regression was performed to define the factors associated with patients reporting that the survey was "very applicable." RESULTS: Of the 133 included patients, the mean age was 49 ± 18 years, 40% were women, and the mean GLTEQ score was 54.1 ± 5.5 (consistent with a high level of activity). For questions 1 and 2, 32% and 29% of the patients reported that QuickDASH was "very applicable," respectively. The multivariable model demonstrated that for every 10-point increase in QuickDASH, there was a 45% to 49% greater odds of respondents reporting that the survey was "very applicable," and for every 5-point increase in pain interference computerized-adaptive-testing, the odds increased by 55% to 70%. No association with GLTEQ was observed. CONCLUSIONS: Patients with greater upper extremity disability and pain interference were more likely to find the QuickDASH content to be applicable to their daily lives and goals in seeking surgical care. CLINICAL RELEVANCE: These findings suggest that QuickDASH may not be an optimal instrument when evaluating upper extremity function in cohorts with mild disability and low pain interference.


Assuntos
Avaliação da Deficiência , Mãos , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Extremidade Superior/cirurgia , Inquéritos e Questionários , Dor , Medidas de Resultados Relatados pelo Paciente , Planejamento de Assistência ao Paciente
4.
Bone ; 179: 116983, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38013019

RESUMO

Stress fractures occur as a result of repeated mechanical stress on bone and are commonly found in the load-bearing lower extremities. Macrophages are key players in the immune system and play an important role in bone remodeling and fracture healing. However, the role of macrophages in stress fractures has not been adequately addressed. We hypothesize that macrophage infiltration into a stress fracture callus site promotes bone healing. To test this, a unilateral stress fracture induction model was employed in which the murine ulna of four-month-old, C57BL/6 J male mice was repeatedly loaded with a pre-determined force until the bone was displaced a distance below the threshold for complete fracture. Mice were treated daily with parathyroid hormone (PTH, 50 µg/kg/day) starting two days before injury and continued until 24 h before euthanasia either four or six days after injury, or treated with trabectedin (0.15 mg/kg) on the day of stress fracture and euthanized three or seven days after injury. These treatments were used due to their established effects on macrophages. While macrophages have been implicated in the anabolic effects of PTH, trabectedin, an FDA approved chemotherapeutic, compromises macrophage function and reduces bone mass. At three- and four-days post injury, callus macrophage numbers were analyzed histologically. There was a significant increase in macrophages with PTH treatment compared to vehicle in the callus site. By one week of healing, treatments differentially affected the bony callus as analyzed by microcomputed tomography. PTH enhanced callus bone volume. Conversely, callus bone volume was decreased with trabectedin treatment. Interestingly, concurrent treatment with PTH and trabectedin rescued the reduction observed in the callus with trabectedin treatment alone. This study reports on the key involvement of macrophages during stress fracture healing. Given these observed outcomes on macrophage physiology and bone healing, these findings may be important for patients actively receiving either of these FDA-approved therapeutics.


Assuntos
Fraturas de Estresse , Hormônio Paratireóideo , Humanos , Masculino , Camundongos , Animais , Lactente , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/uso terapêutico , Trabectedina/farmacologia , Fraturas de Estresse/tratamento farmacológico , Fraturas de Estresse/patologia , Microtomografia por Raio-X/métodos , Camundongos Endogâmicos C57BL , Calo Ósseo/patologia , Consolidação da Fratura , Macrófagos
5.
J Am Acad Orthop Surg ; 31(15): 756-765, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418325

RESUMO

Patient-reported outcome measurement (PROM) tools are used to evaluate health status and response to treatment and have been integral in the effort to improve the quality of care provided. Patient reported outcomes (PROs) have garnered additional attention since becoming a priority of the National Institutes of Health in the early part of this century, and their use in both clinical practice and research has subsequently increased. In the upper extremity, a variety of PRO instruments exist that can assist physicians in their ability to track and/or prognosticate outcomes, make comparisons between treatments as well as strengthen research methodologies, and help determine the value of care. A more complete interpretation of the clinical significance of patient-reported outcome measurements is informed by parameters such as minimal clinically important difference, substantial clinical benefit and patient acceptable symptom state.


Assuntos
Diferença Mínima Clinicamente Importante , Cirurgiões , Humanos , Medidas de Resultados Relatados pelo Paciente , Extremidade Superior , Resultado do Tratamento
7.
J Clin Med ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36835830

RESUMO

Objective: This study reviewed the literature on local or systemic administration of antisclerostin, presenting results associated with osseointegration of dental/orthopedic implants and stimulation of bone remodeling. Materials and Methods: An extensive electronic search was conducted through MED-LINE/PubMed, PubMed Central, Web of Science databases and specific peer-reviewed journals to identify case reports, case series, randomized controlled trials, clinical trials and animal studies comparing either the systemic or local administration of antisclerostin and its effect in osseointegration and bone remodeling. Articles in English and with no restriction on period were included. Results: Twenty articles were selected for a full-text, and one was excluded. Finally, 19 articles were included in the study (16 animal studies and 3 randomized control trials). These studies were divided into two groups, which evaluated (i) osseointegration and (ii) bone remodeling potential. Initially 4560 humans and 1191 animals were identified. At least 1017 were excluded from the studies (981 humans and 36 animals), totaling 4724 subjects who completed (3579 humans and 1145 animals). (a) Osseointegration: 7 studies described this phenomenon; 4 reported bone-implant contact, which increased in all included studies. Similar results were found for bone mineral density, bone area/volume and bone thickness. (b) Bone remodeling: 13 studies were used for description. The studies reported an increase in BMD with sclerostin antibody treatment. A similar effect was found for bone mineral density/area/volume, trabecular bone and bone formation. Three biomarkers of bone formation were identified: bone-specific alkaline phosphatase (BSAP), osteocalcin and procollagen type 1 N-terminal Pro-peptide (P1NP); and markers for bone resorption were: serum C-telopeptide (sCTX), C-terminal telopeptides of type I collagen (CTX-1), ß-isomer of C-terminal telopeptides of type I collagen (ß-CTX) and tartrate-resistant acid phosphatase 5b (TRACP-5b). There were limitations: low number of human studies identified; high divergence in the model used (animal or human); the variance in the type of Scl-Ab and doses of administration; and the lack of reference quantitative values in the parameters analyzed by authors' studies (many articles only reported qualitative information). Conclusion: Within the limitations of this review and carefully observing all data, due to the number of articles included and the heterogeneity existing, more studies must be carried out to better evaluate the action of the antisclerostin on the osseointegration of dental implants. Otherwise, these findings can accelerate and stimulate bone remodeling and neoformation.

8.
Cell Death Dis ; 14(1): 58, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693838

RESUMO

Apoptosis and efficient efferocytosis are integral to growth, development, and homeostasis. The heterogeneity of these mechanisms in different cells across distinct tissues renders it difficult to develop broadly applicable in vivo technologies. Here, we introduced a novel inducible caspase-9 (iCasp9) mouse model which allowed targeted cell apoptosis and further facilitated investigation of concomitant efferocytosis. We generated iCasp9+/+ mice with conditional expression of chemically inducible caspase-9 protein that is triggered in the presence of Cre recombinase. In vitro, bone marrow cells from iCasp9+/+ mice showed expression of the iCasp9 protein when transduced with Cre-expressing adenovirus. Treatment of these cells with the chemical dimerizer (AP20187/AP) resulted in iCasp9 processing and cleaved caspase-3 upregulation, indicating successful apoptosis induction. The in vivo functionality and versatility of this model was demonstrated by crossing iCasp9+/+ mice with CD19-Cre and Osteocalcin (OCN)-Cre mice to target CD19+ B cells or OCN+ bone-lining osteoblasts. Immunofluorescence and/or immunohistochemical staining in combination with histomorphometric analysis of EGFP, CD19/OCN, and cleaved caspase-3 expression demonstrated that a single dose of AP effectively induced apoptosis in CD19+ B cells or OCN+ osteoblasts. Examination of the known efferocytes in the target tissues showed that CD19+ cell apoptosis was associated with infiltration of dendritic cells into splenic B cell follicles. In the bone, where efferocytosis remains under-explored, the use of iCasp9 provided direct in vivo evidence that macrophages are important mediators of apoptotic osteoblast clearance. Collectively, this study presented the first mouse model of iCasp9 which achieved selective apoptosis, allowing examination of subsequent efferocytosis. Given its unique feature of being controlled by any Cre-expressing mouse lines, the potential applications of this model are extensive and will bring forth more insights into the diversity of mechanisms and cellular effects induced by apoptosis including the physiologically important efferocytic process that follows.


Assuntos
Apoptose , Caspase 9 , Fagocitose , Animais , Camundongos , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Modelos Animais de Doenças
9.
Cells ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496973

RESUMO

The clearance of apoptotic cancer cells by macrophages, known as efferocytosis, fuels the bone-metastatic growth of prostate cancer cells via pro-inflammatory and immunosuppressive processes. However, the exact molecular mechanisms remain unclear. In this study, single-cell transcriptomics of bone marrow (BM) macrophages undergoing efferocytosis of apoptotic prostate cancer cells revealed a significant enrichment in their cellular response to hypoxia. Here, we show that BM macrophage efferocytosis increased hypoxia inducible factor-1alpha (HIF-1α) and STAT3 phosphorylation (p-STAT3 at Tyr705) under normoxic conditions, while inhibitors of p-STAT3 reduced HIF-1α. Efferocytosis promoted HIF-1α stabilization, reduced its ubiquitination, and induced HIF-1α and p-STAT3 nuclear translocation. HIF-1α stabilization in efferocytic BM macrophages resulted in enhanced expression of pro-inflammatory cytokine MIF, whereas BM macrophages with inactive HIF-1α reduced MIF expression upon efferocytosis. Stabilization of HIF-1α using the HIF-prolyl-hydroxylase inhibitor, Roxadustat, enhanced MIF expression in BM macrophages. Furthermore, BM macrophages treated with recombinant MIF protein activated NF-κB (p65) signaling and increased the expression of pro-inflammatory cytokines. Altogether, these findings suggest that the clearance of apoptotic cancer cells by BM macrophages triggers p-STAT3/HIF-1α/MIF signaling to promote further inflammation in the bone tumor microenvironment where a significant number of apoptotic cancer cells are present.


Assuntos
Medula Óssea , Neoplasias da Próstata , Masculino , Humanos , Medula Óssea/metabolismo , Macrófagos/metabolismo , Fagocitose , Neoplasias da Próstata/patologia , Citocinas/metabolismo , Inflamação/patologia , Hipóxia/metabolismo , Microambiente Tumoral
10.
PLoS One ; 16(11): e0259462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34788313

RESUMO

We define cell morphodynamics as the cell's time dependent morphology. It could be called the cell's shape shifting ability. To measure it we use a biomarker free, dynamic histology method, which is based on multiplexed Cell Magneto-Rotation and Machine Learning. We note that standard studies looking at cells immobilized on microscope slides cannot reveal their shape shifting, no more than pinned butterfly collections can reveal their flight patterns. Using cell magnetorotation, with the aid of cell embedded magnetic nanoparticles, our method allows each cell to move freely in 3 dimensions, with a rapid following of cell deformations in all 3-dimensions, so as to identify and classify a cell by its dynamic morphology. Using object recognition and machine learning algorithms, we continuously measure the real-time shape dynamics of each cell, where from we successfully resolve the inherent broad heterogeneity of the morphological phenotypes found in a given cancer cell population. In three illustrative experiments we have achieved clustering, differentiation, and identification of cells from (A) two distinct cell lines, (B) cells having gone through the epithelial-to-mesenchymal transition, and (C) cells differing only by their motility. This microfluidic method may enable a fast screening and identification of invasive cells, e.g., metastatic cancer cells, even in the absence of biomarkers, thus providing a rapid diagnostics and assessment protocol for effective personalized cancer therapy.


Assuntos
Aprendizado de Máquina , Segunda Neoplasia Primária , Análise por Conglomerados , Humanos , Testes Imunológicos
11.
Cells ; 9(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059476

RESUMO

The clearance of apoptotic cells by macrophages (efferocytosis) is crucial to maintain normal tissue homeostasis; however, efferocytosis of cancer cells frequently results in inflammation and immunosuppression. Recently, we demonstrated that efferocytosis of apoptotic prostate cancer cells by bone marrow-derived macrophages induced a pro-inflammatory response that accelerated metastatic tumor growth in bone. To evaluate the microenvironmental impact of macrophages and their efferocytic function, we compared peritoneal macrophages (P-MΦ) versus bone marrow-derived macrophages (BM-MΦs) using an efferocytosis in vitro model. The capability to engulf apoptotic prostate cells was similar in BM-MΦs and P-MΦs. Ex vivo analysis of BM-MΦs showed an M2-like phenotype compared with a predominantly M1-like phenotype in P-MΦs. A distinct gene and protein expression profile of pro-inflammatory cytokines was found in BM-MΦs as compared with P-MΦs engulfing apoptotic prostate cancer cells. Importantly, the reprogramming of BM-MΦs toward an M1-like phenotype mitigated their inflammatory cytokine expression profile. In conclusion, BM-MΦs and P-MΦs are both capable of efferocytosing apoptotic prostate cancer cells; however, BM-MΦs exert increased inflammatory cytokine expression that is dependent upon the M2 polarization stage of macrophages. These findings suggest that bone marrow macrophage efferocytosis of apoptotic cancer cells maintains a unique pro-inflammatory microenvironment that may support a fertile niche for cancer growth. Finally, bone marrow macrophage reprogramming towards M1-type by interferon-γ (IFN-γ) induced a significant reduction in the efferocytosis-mediated pro-inflammatory signature.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Interferon gama/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose
13.
FASEB J ; 32(7): 3730-3741, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29475373

RESUMO

A prolonged increase in proinflammatory cytokines is associated with osteoporotic and autoimmune bone loss and, conversely, anti-inflammatory pathways are associated with protection against bone loss. Milk fat globule-epidermal growth factor (MFG-E)-8 is a glycoprotein that is proresolving, regulates apoptotic cell clearance, and has been linked to autoimmune disease and skeletal homeostasis. The role of MFG-E8 in the young vs. adult skeleton was determined in mice deficient in MFG-E8 (KO). In vivo, trabecular bone was similar in MFG-E8KO and wild-type (WT) mice at 6 and 16 wk, whereas 22 wk adult MFG-E8KO mice displayed significantly reduced trabecular BV/TV. The number of osteoclasts per bone surface was increased in 22-wk MFG-E8 KO vs. WT mice, and recombinant murine MFG-E8 decreased the number and size of osteoclasts in vitro. Adult MFG-E8KO spleen weight:body weight was increased compared with WT, and flow cytometric analysis showed significantly increased myeloid-derived suppressor cells (CD11bhiGR-1+) and neutrophils (CD11bhiLy6G+) in MFG-E8KO bone marrow, suggesting an inflammatory phenotype. PTH-treated MFG-E8KO mice showed a greater anabolic response (+124% BV/TV) than observed in PTH-treated WT mice (+64% BV/TV). These data give insight into the role of MFG-E8 in the adult skeleton and suggest that anabolic PTH may be a valuable therapeutic approach for autoimmune-associated skeletal disease.-Michalski, M. N., Seydel, A. L., Siismets, E. M., Zweifler, L. E., Koh, A. J., Sinder, B. P., Aguirre, J. I., Atabai, K., Roca, H., McCauley, L. K. Inflammatory bone loss associated with MFG-E8 deficiency is rescued by teriparatide.


Assuntos
Antígenos de Superfície/genética , Conservadores da Densidade Óssea/uso terapêutico , Proteínas do Leite/genética , Osteoporose/tratamento farmacológico , Teriparatida/uso terapêutico , Animais , Conservadores da Densidade Óssea/farmacologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoporose/genética , Teriparatida/farmacologia
14.
J Clin Invest ; 128(1): 248-266, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202471

RESUMO

During tumor progression, immune system phagocytes continually clear apoptotic cancer cells in a process known as efferocytosis. However, the impact of efferocytosis in metastatic tumor growth is unknown. In this study, we observed that macrophage-driven efferocytosis of prostate cancer cells in vitro induced the expression of proinflammatory cytokines such as CXCL5 by activating Stat3 and NF-κB(p65) signaling. Administration of a dimerizer ligand (AP20187) triggered apoptosis in 2 in vivo syngeneic models of bone tumor growth in which apoptosis-inducible prostate cancer cells were either coimplanted with vertebral bodies, or inoculated in the tibiae of immunocompetent mice. Induction of 2 pulses of apoptosis correlated with increased infiltration of inflammatory cells and accelerated tumor growth in the bone. Apoptosis-induced tumors displayed elevated expression of the proinflammatory cytokine CXCL5. Likewise, CXCL5-deficient mice had reduced tumor progression. Peripheral blood monocytes isolated from patients with bone metastasis of prostate cancer were more efferocytic compared with normal controls, and CXCL5 serum levels were higher in metastatic prostate cancer patients relative to patients with localized prostate cancer or controls. Altogether, these findings suggest that the myeloid phagocytic clearance of apoptotic cancer cells accelerates CXCL5-mediated inflammation and tumor growth in bone, pointing to CXCL5 as a potential target for cancer therapeutics.


Assuntos
Apoptose/imunologia , Neoplasias Ósseas/imunologia , Quimiocina CXCL5/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Neoplasias da Próstata/imunologia , Animais , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Quimiocina CXCL5/genética , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Células Mieloides/imunologia , Células Mieloides/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Fagocitose/genética , Fagocitose/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
15.
J Bone Miner Res ; 32(10): 2116-2127, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28600866

RESUMO

Macrophages have established roles supporting bone formation. Despite their professional phagocytic nature, the role of macrophage phagocytosis in bone homeostasis is not well understood. Interestingly, apoptosis is a pivotal feature of cellular regulation and the primary fate of osteoblasts is apoptosis. Efferocytosis (phagocytosis of apoptotic cells) is a key physiologic process for the homeostasis of many tissues, and is associated with expression of osteoinductive factors. To test effects of macrophage depletion and compromised phagocytosis on bone, 16-week-old male C57BL/6J mice were treated with trabectedin-a chemotherapeutic with established anti-macrophage effects. Trabectedin treatment reduced F4/80+ and CD68+ macrophages in the bone marrow as assessed by flow cytometry, osteal macrophages near the bone surface, and macrophage viability in vitro. Trabectedin treatment significantly reduced marrow gene expression of key phagocytic factors (Mfge8, Mrc1), and macrophages from treated mice had a reduced ability to phagocytose apoptotic mimicry beads. Macrophages cultured in vitro and treated with trabectedin displayed reduced efferocytosis of apoptotic osteoblasts. Moreover, efferocytosis increased macrophage osteoinductive TGF-ß production and this increase was inhibited by trabectedin. Long-term (6-week) treatment of 16-week-old C57BL/6J mice with trabectedin significantly reduced trabecular BV/TV and cortical BMD. Although trabectedin reduced osteoclast numbers in vitro, osteoclast surface in vivo was not altered. Trabectedin treatment reduced serum P1NP as well as MS/BS and BFR/BS, and inhibited mineralization and Runx2 gene expression of osteoblast cultures. Finally, intermittent PTH 1-34 (iPTH) treatment was administered in combination with trabectedin, and iPTH increased trabecular bone volume fraction (BV/TV) in trabectedin-treated mice. Collectively, the data support a model whereby trabectedin significantly reduces bone mass due to compromised macrophages and efferocytosis, but also due to direct effects on osteoblasts. This data has immediate clinical relevance in light of increasing use of trabectedin in oncology. © 2017 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/anatomia & histologia , Dioxóis/farmacologia , Macrófagos/citologia , Osteoblastos/citologia , Fagocitose/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacologia , Animais , Calcificação Fisiológica/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Osso Cortical/efeitos dos fármacos , Osso Cortical/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Trabectedina
16.
Chin J Cancer ; 36(1): 29, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28292326

RESUMO

Prostate cancer tissue is composed of both cancer cells and host cells. The milieu of host components that compose the tumor is termed the tumor microenvironment (TME). Host cells can be those derived from the tissue in which the tumor originates (e.g., fibroblasts and endothelial cells) or those recruited, through chemotactic or other factors, to the tumor (e.g., circulating immune cells). Some immune cells are key players in the TME and represent a large proportion of non-tumor cells found within the tumor. Immune cells can have both anti-tumor and pro-tumor activity. In addition, crosstalk between prostate cancer cells and immune cells affects immune cell functions. In this review, we focus on immune cells and cytokines that contribute to tumor progression. We discuss T-regulatory and T helper 17 cells and macrophages as key modulators in prostate cancer progression. In addition, we discuss the roles of interleukin-6 and receptor activator of nuclear factor kappa-B ligand in modulating prostate cancer progression. This review highlights the concept that immune cells and cytokines offer a potentially promising target for prostate cancer therapy.


Assuntos
Neoplasias da Próstata/imunologia , Microambiente Tumoral/imunologia , Animais , Citocinas/imunologia , Humanos , Masculino , Ligante RANK/imunologia
17.
J Cell Biochem ; 117(12): 2697-2706, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27061191

RESUMO

Apoptosis occurs at an extraordinary rate in the human body and the effective clearance of dead cells (efferocytosis) is necessary to maintain homeostasis and promote healing, yet the contribution and impact of this process in bone is unclear. Bone formation requires that bone marrow stromal cells (BMSCs) differentiate into osteoblasts which direct matrix formation and either become osteocytes, bone lining cells, or undergo apoptosis. A series of experiments were performed to identify the regulators and consequences of macrophage efferocytosis of apoptotic BMSCs (apBMSCs). Bone marrow derived macrophages treated with the anti-inflammatory cytokine interleukin-10 (IL-10) exhibited increased efferocytosis of apBMSCs compared to vehicle treated macrophages. Additionally, IL-10 increased anti-inflammatory M2-like macrophages (CD206+ ), and further enhanced efferocytosis within the CD206+ population. Stattic, an inhibitor of STAT3 phosphorylation, reduced the IL-10-mediated shift in M2 macrophage polarization and diminished IL-10-directed efferocytosis of apBMSCs by macrophages implicating the STAT3 signaling pathway. Cell culture supernatants and RNA from macrophages co-cultured with apoptotic bone cells showed increased secretion of monocyte chemotactic protein 1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) and transforming growth factor beta 1 (TGF-ß1) and increased ccl2 gene expression. In conclusion, IL-10 increases M2 macrophage polarization and enhances macrophage-mediated engulfment of apBMSCs in a STAT3 phosphorylation-dependent manner. After engulfment of apoptotic bone cells, macrophages secrete TGF-ß1 and MCP-1/CCL2, factors which fuel the remodeling process. A better understanding of the role of macrophage efferocytosis as it relates to normal and abnormal bone turnover will provide vital information for future therapeutic approaches to treat bone related diseases. J. Cell. Biochem. 117: 2697-2706, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Apoptose , Medula Óssea/metabolismo , Macrófagos/citologia , Osteoblastos/patologia , Fagocitose/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
18.
Bone Res ; 3: 15014, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26558138

RESUMO

The bone marrow contains a heterogeneous milieu of cells, including macrophages, which are key cellular mediators for resolving infection and inflammation. Macrophages are most well known for their ability to phagocytose foreign bodies or apoptotic cells to maintain homeostasis; however, little is known about their function in the bone microenvironment. In the current study, we investigated the in vitro interaction of murine macrophages and bone marrow stromal cells (BMSCs), with focus on the juxtacrine induction of IL-6 signaling and the resultant effect on BMSC migration and growth. The juxtacrine interaction of primary mouse macrophages and BMSCs activated IL-6 signaling in the co-cultures, which subsequently enhanced BMSC migration and increased BMSC numbers. BMSCs and macrophages harvested from IL-6 knockout mice revealed that IL-6 signaling was essential for enhancement of BMSC migration and increased BMSC numbers via juxtacrine interactions. BMSCs were the main contributor of IL-6 signaling, and hence activation of the IL-6/gp130/STAT3 pathway. Meanwhile, macrophage derived IL-6 remained important for the overall production of IL-6 protein in the co-cultures. Taken together, these findings show the function of macrophages as co-inducers of migration and growth of BMSCs, which could directly influence bone formation and turnover.

19.
Oncotarget ; 6(34): 35782-96, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26459393

RESUMO

Resident macrophages in bone play important roles in bone remodeling, repair, and hematopoietic stem cell maintenance, yet their role in skeletal metastasis remains under investigated. The purpose of this study was to determine the role of macrophages in prostate cancer skeletal metastasis, using two in vivo mouse models of conditional macrophage depletion. RM-1 syngeneic tumor growth was analyzed in an inducible macrophage (CSF-1 receptor positive cells) ablation model (MAFIA mice). There was a significant reduction in tumor growth in the tibiae of macrophage-ablated mice, compared with control non-ablated mice. Similar results were observed when macrophage ablation was performed using liposome-encapsulated clodronate and human PC-3 prostate cancer cells where tumor-bearing long bones had increased numbers of tumor associated-macrophages. Although tumors were consistently smaller in macrophage-depleted mice, paradoxical results of macrophage depletion on bone were observed. Histomorphometric and micro-CT analyses demonstrated that clodronate-treated mice had increased bone volume, while MAFIA mice had reduced bone volume. These results suggest that the effect of macrophage depletion on tumor growth was independent of its effect on bone responses and that macrophages in bone may be more important to tumor growth than the bone itself. In conclusion, resident macrophages play a pivotal role in prostate cancer growth in bone.


Assuntos
Células da Medula Óssea/imunologia , Neoplasias Ósseas/imunologia , Macrófagos/imunologia , Neoplasias da Próstata/imunologia , Animais , Neoplasias Ósseas/secundário , Regeneração Óssea , Carcinogênese , Processos de Crescimento Celular , Linhagem Celular Tumoral , Ácido Clodrônico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias da Próstata/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Carga Tumoral
20.
Bonekey Rep ; 4: 706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26131358

RESUMO

On the road to metastasis a cancer cell has to overcome two major obstacles: the physical escape from the primary tumor to a distant tissue and the adaptation to the new microenvironment via colonization and the formation of a secondary tumor. Accumulated scientific findings support the hypothesis that inflammation is a critical component of the tumor microenvironment and develops as a result of tumor-induced recruitment of inflammatory cells and their reciprocal interaction with other cells from the tumor network. These interactions modulate immune responses to suppress antitumor immunity and activate feedback amplification signaling loops that link nearly all the cells in the cancer inflammatory milieu. The coordinated regulation of cytokines/chemokines, receptors and other inflammatory mediators enables the different steps of the metastatic cascade. As a target organ for colonization, the bone is rich in inflammatory mediators that are critical for successful cancer growth. In this review, we focus on the inflammatory cells, molecules and mechanisms that facilitate the expansion of cancer cells from the primary tumor to their new 'home' in the skeleton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA