Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39373605

RESUMO

X-ray line emission spectra can thoroughly characterize hot plasmas, especially when line shapes and ratios convey distinct aspects of plasma conditions. However, the high spectral resolution required for observing line shapes is often at odds with the large bandwidth required to observe many line ratios across a wide spectral range. One strategy to obtain high spectral resolution over a wide bandwidth is to use multiple crystals with calibrated reflectivity so that line intensities across different crystals can be compared. Here, we explore the use of a low-resolution, wide-bandwidth mica survey spectrometer to infer relative reflectivity of two high-resolution, narrow-bandwidth quartz crystals. A Monte Carlo error analysis determines comparable x-ray line ratios measured from both spectrometers, resulting in an in situ calibration factor and associated uncertainty for the relative reflectivity of the high-resolution crystals.

2.
Phys Rev Lett ; 133(4): 045002, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39121405

RESUMO

We show that multi-GeV laser wakefield electron accelerators in meter-scale, low density hydrodynamic plasma waveguides operate in a new nonlinear propagation regime dominated by sustained beating of lowest order modes of the ponderomotively modified channel; this occurs whether or not the injected pulse is linearly matched to the guide. For a continuously doped gas jet, this emergent mode beating effect leads to axially modulated enhancement of ionization injection and a multi-GeV energy spectrum of multiple quasimonoenergetic peaks; the same process in a locally doped jet produces single multi-GeV peaks with <10% energy spread. A three-stage model of drive laser pulse evolution and ionization injection characterizes the beating effect and explains our experimental results.

3.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38990079

RESUMO

We describe the development and demonstration of a high-repetition-rate-capable dual-channel (DC) x-ray spectrometer designed for high-intensity laser-plasma experiments (≥1×1021 W/cm2). The spectrometer, which operates at high repetition rates, is limited only by the refresh rate of targets and the camera's frame rate. It features two channels, each equipped with a flat highly oriented pyrolytic graphite (HOPG) crystal and a unique detector plane, allowing it to resolve two distinct x-ray bands: approximately 7-10 and 10-13 keV. Each detector plate carrier holds two slots for active (scintillators) or passive (imaging plates) x-ray detectors. We present the design and testing of the HR-DC-HOPG using both the COMET laser (10 J, 0.5 ps shot/4 min) at LLNL's Jupiter Laser Facility and the SCARLET laser (10 J, 30 fs shot/min) at Ohio State University. The results demonstrate the spectrometer's performance across various laser energies, target materials, pulse shapes, and detector types.

4.
Opt Express ; 32(9): 16164-16181, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859252

RESUMO

Laser-induced filaments have been shown to reduce the voltage necessary to initiate electrical discharges in atmospheric air and guide their propagation over long distances. Here we demonstrate the stable generation of laser filament-guided electrical discharge columns in air initiated by high energy (up to 250 mJ) 1030 nm wavelength laser pulses of 7 ps duration at repetition rates up to 1 kHz and we discuss the processes leading to breakdown. A current proportional to the laser pulse energy is observed to arise as soon as the laser pulse arrives, initiating a high impedance phase of the discharge. Full breakdown, characterized by impedance collapse, occurs 100 ns to several µs later. A record 4.7-fold reduction in breakdown voltage for dc-biased discharges, which remains practically independent of the repetition rate up to 1 kHz, is observed to be primarily caused by a single laser pulse that produces a large (∼80%) density depression. The radial gaps between the filamentary plasma channel and the hollowed electrodes employed are shown to play a significant role in the breakdown dynamics. A rapid increase of 3-4 orders of magnitude in current is observed to follow the formation of localized radial current channels linking the filament to the electrodes. The increased understanding and control of kHz repetition rate filament-guided discharges can aid their use in applications.

5.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619372

RESUMO

We demonstrate a flexible multichannel fiber-based imaging Doppler spectrometer to characterize plasmas in high intensity (≥1 × 1018 W/cm2) laser-plasma experiments at high repetition rates. This instrument collects data from ×21 different plasma locations combining optical fibers and a single imaging spectrometer. This diagnostic maps the plasma velocity evolution as a function of time with sub-pico-second resolution. Experimental results showing 2D velocity measurements of plasma with 20 µm spatial resolution are presented. Intensities of the order of 1018 W/cm2 were used to generate a plasma, while a much less intense, frequency doubled (400 nm), probe beam (1011 W/cm2) was used to measure the Doppler shift from the plasma critical surface. The instrument can be scaled to a larger number of channels (e.g., 100) still using a single spectrometer.

6.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117203

RESUMO

We present the development of a flexible tape-drive target system to generate and control secondary high-intensity laser-plasma sources. Its adjustable design permits the generation of relativistic MeV particles and x rays at high-intensity (i.e., ≥1 × 1018 W cm-2) laser facilities, at high repetition rates (>1 Hz). The compact and robust structure shows good mechanical stability and a high target placement accuracy (<4 µm RMS). Its compact and flexible design allows for mounting in both the horizontal and vertical planes, which makes it practical for use in cluttered laser-plasma experimental setups. The design permits ∼170° of access on the laser-driver side and 120° of diagnostic access at the rear. A range of adapted apertures have been designed and tested to be easily implemented to the targetry system. The design and performance testing of the tape-drive system in the context of two experiments performed at the COMET laser facility at the Lawrence Livermore National Laboratory and at the Advanced Lasers and Extreme Photonics (ALEPH) facility at Colorado State University are discussed. Experimental data showing that the designed prototype is also able to both generate and focus high-intensity laser-driven protons at high repetition rates are also presented.

7.
Sci Rep ; 13(1): 18155, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875514

RESUMO

The development of high intensity petawatt lasers has created new possibilities for ion acceleration and nuclear fusion using solid targets. In such laser-matter interaction, multiple ion species are accelerated with broad spectra up to hundreds of MeV. To measure ion yields and for species identification, CR-39 solid-state nuclear track detectors are frequently used. However, these detectors are limited in their applicability for multi-ion spectra differentiation as standard image recognition algorithms can lead to a misinterpretation of data, there is no unique relation between track diameter and particle energy, and there are overlapping pit diameter relationships for multiple particle species. In this report, we address these issues by first developing an algorithm to overcome user bias during image processing. Second, we use calibration of the detector response for protons, carbon and helium ions (alpha particles) from 0.1 to above 10 MeV and measurements of statistical energy loss fluctuations in a forward-fitting procedure utilizing multiple, differently filtered CR-39, altogether enabling high-sensitivity, multi-species particle spectroscopy. To validate this capability, we show that inferred CR-39 spectra match Thomson parabola ion spectrometer data from the same experiment. Filtered CR-39 spectrometers were used to detect, within a background of ~ 2 × 1011 sr-1 J-1 protons and carbons, (1.3 ± 0.7) × 108 sr-1 J-1 alpha particles from laser-driven proton-boron fusion reactions.

8.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219386

RESUMO

Resonance absorption (RA) occurs when a p-polarized electromagnetic wave, obliquely incident on an inhomogeneous plasma, tunnels past its turning point and resonantly excites an electron plasma wave (EPW) at the critical density. This phenomenon is important, for instance, in the direct drive approach to inertial fusion energy and is a particular example of a wider phenomenon in plasma physics known as mode conversion, which is crucial for heating magnetic fusion devices, such as tokamaks, via RF heating. Direct measurement of these RA-generated EPW accelerated hot electrons, with energy in the range of a few tens to a few hundreds of keV, is a challenging task due to the relatively low deflecting magnetic fields needed. The solution described here is a magnetic electron spectrometer (MES) with a continually changing magnetic field, lower at the entrance of the MES and gradually increasing toward the end, that enables the measurement of a wide spectral range of electrons with energies between 50 and 460 keV. Electron spectra taken in a LaserNetUS RA experiment were acquired from plasmas generated by irradiating polymer targets with the combination of an ∼300 ps pulse followed by a series of ten high intensity 50-200 fs duration laser pulses from the ALEPH laser at Colorado State University. The high intensity beam is designed as spike trains of uneven duration and delay pulses in order to modify the RA phenomenon.

9.
Rev Sci Instrum ; 94(2): 023507, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859040

RESUMO

The PROBIES diagnostic is a new, highly flexible, imaging and energy spectrometer designed for laser-accelerated protons. The diagnostic can detect low-mode spatial variations in the proton beam profile while resolving multiple energies on a single detector or more. When a radiochromic film stack is employed for "single-shot mode," the energy resolution of the stack can be greatly increased while reducing the need for large numbers of films; for example, a recently deployed version allowed for 180 unique energy measurements spanning ∼3 to 75 MeV with <0.4 MeV resolution using just 20 films vs 180 for a comparable traditional film and filter stack. When utilized with a scintillator, the diagnostic can be run in high-rep-rate (>Hz rate) mode to recover nine proton energy bins. We also demonstrate a deep learning-based method to analyze data from synthetic PROBIES images with greater than 95% accuracy on sub-millisecond timescales and retrained with experimental data to analyze real-world images on sub-millisecond time-scales with comparable accuracy.

10.
Rev Sci Instrum ; 94(2): 023505, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859067

RESUMO

We present the development of a compact Thomson parabola ion spectrometer capable of characterizing the energy spectra of various ion species of multi-MeV ion beams from >1020W/cm2 laser produced plasmas at rates commensurate with the highest available from any of the current and near-future PW-class laser facilities. This diagnostic makes use of a polyvinyl toluene based fast plastic scintillator (EJ-260), and the emitted light is collected using an optical imaging system coupled to a thermoelectrically cooled scientific complementary metal-oxide-semiconductor camera. This offers a robust solution for data acquisition at a high repetition rate, while avoiding the added complications and nonlinearities of micro-channel plate based systems. Different ion energy ranges can be probed using a modular magnet setup, a variable electric field, and a varying drift-distance. We have demonstrated operation and data collection with this system at up to 0.2 Hz from plasmas created by irradiating a solid target, limited only by the targeting system. With the appropriate software, on-the-fly ion spectral analysis will be possible, enabling real-time experimental control at multi-Hz repetition rates.

11.
Rev Sci Instrum ; 93(11): 113508, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461516

RESUMO

We present in this work the development of an ultra-compact, multi-channel x-ray spectrometer (UCXS). This diagnostic has been specially built and adapted to perform at high-repetition-rate (>1 Hz) for high-intensity, short-pulse laser plasma experiments. X-ray filters of varying materials and thicknesses are chosen to provide spectral resolution up to ΔE ≈ 1 keV over the x-ray energy range of 1-30 keV. These filters are distributed over a total of 25 channels, where each x-ray filter is coupled to a single scintillator. The UCXS is designed to detect and resolve a large variety of laser-driven x-ray sources such as low energy bremsstrahlung emission, fluorescence, and betatron radiation (up to 30 keV). Preliminary results from commissioning experiments at the ABL laser facility at Colorado State University are provided.

12.
Phys Rev Lett ; 129(23): 235001, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563203

RESUMO

Solids ablate under laser irradiation, but experiments have not previously characterized the initiation of this process at ultrarelativistic laser intensities. We present first measurements of bulk ion velocity distributions as ablation begins, captured as a function of depth via Doppler-shifted x-ray line emission from two viewing angles. Bayesian analysis indicates that bulk ions are either nearly stationary or flowing outward at the plasma sound speed. The measurements quantitatively constrain the laser-plasma ablation mechanism, suggesting that a steplike electrostatic potential structure drives solid disassembly.

13.
Rev Sci Instrum ; 93(10): 103527, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319349

RESUMO

A high-resolution x-ray spectrometer was coupled with an ultrafast x-ray streak camera to produce time-resolved line shape spectra measured from hot, solid-density plasmas. A Bragg crystal was placed near laser-produced plasma to maximize throughput; alignment tolerances were established by ray tracing. The streak camera produced single-shot, time-resolved spectra, heavily sloped due to photon time-of-flight differences, with sufficient reproducibility to accumulate photon statistics. The images are time-calibrated by the slope of streaked spectra and dewarped to generate spectra emitted at different times defined at the source. The streaked spectra demonstrate the evolution of spectral shoulders and other features on ps timescales, showing the feasibility of plasma parameter measurements on the rapid timescales necessary to study high-energy-density plasmas.

14.
Rev Sci Instrum ; 93(10): 103547, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319355

RESUMO

Accurately and rapidly diagnosing laser-plasma interactions is often difficult due to the time-intensive nature of the analysis and will only become more so with the rise of high repetition rate lasers and the desire to implement feedback on a commensurate timescale. Diagnostic analysis employing machine learning techniques can help address this problem while maintaining a high degree of accuracy. We report on the application of machine learning to the analysis of a scintillator-based electron spectrometer for experiments on high intensity, laser-plasma interactions at the Colorado State University Advanced Lasers and Extreme Photonics facility. Our approach utilizes a neural network trained on synthetic data and tested on experiments to extract the accelerated electron temperature. By leveraging transfer learning, we demonstrate an improvement in the neural network accuracy, decreasing the network error by 50%.

15.
Phys Rev Lett ; 129(13): 135001, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206410

RESUMO

Short-pulse, laser-solid interactions provide a unique platform for studying complex high-energy-density matter. We present the first demonstration of solid-density, micron-scale keV plasmas uniformly heated by a high-contrast, 400 nm wavelength laser at intensities up to 2×10^{21} W/cm^{2}. High-resolution spectral analysis of x-ray emission reveals uniform heating up to 3.0 keV over 1 µm depths. Particle-in-cell simulations indicate the production of a uniformly heated keV plasma to depths of 2 µm. The significant bulk heating and presence of highly ionized ions deep within the target are attributed to the few MeV hot electrons that become trapped and undergo refluxing within the target sheath fields. These conditions enabled the differentiation of atomic physics models of ionization potential depression in high-energy-density environments.

16.
Sci Rep ; 12(1): 6204, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418583

RESUMO

Amplification of attosecond pulses produced via high harmonic generation is a formidable problem since none of the amplifiers can support the corresponding PHz bandwidth. Producing the well defined polarization state common for a set of harmonics required for formation of the circularly/elliptically polarized attosecond pulses (which are on demand for dynamical imaging and coherent control of the spin flip processes) is another big challenge. In this work we show how both problems can be tackled simultaneously on the basis of the same platform, namely, the plasma-based X-ray amplifier whose resonant transition frequency is modulated by an infrared field.

17.
Nat Commun ; 13(1): 54, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013209

RESUMO

Intense lasers can accelerate electrons to very high energy over a short distance. Such compact accelerators have several potential applications including fast ignition, high energy physics, and radiography. Among the various schemes of laser-based electron acceleration, vacuum laser acceleration has the merits of super-high acceleration gradient and great simplicity. Yet its realization has been difficult because injecting free electrons into the fast-oscillating laser field is not trivial. Here we demonstrate free-electron injection and subsequent vacuum laser acceleration of electrons up to 20 MeV using the relativistic transparency effect. When a high-contrast intense laser drives a thin solid foil, electrons from the dense opaque plasma are first accelerated to near-light speed by the standing laser wave in front of the solid foil and subsequently injected into the transmitted laser field as the opaque plasma becomes relativistically transparent. It is possible to further optimize the electron injection/acceleration by manipulating the laser polarization, incident angle, and temporal pulse shaping. Our result also sheds light on the fundamental relativistic transparency process, crucial for producing secondary particle and light sources.

18.
Phys Rev Lett ; 127(20): 205001, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860067

RESUMO

Heß spectral line shapes are important for diagnosing temperature and density in many dense plasmas. This work presents Heß line shapes measured with high spectral resolution from solid-density plasmas with minimized gradients. The line shapes show hallmark features of Stark broadening, including quantifiable redshifts and double-peaked structure with a significant dip between the peaks; these features are compared to models through a Markov chain Monte Carlo framework. Line shape theory using the dipole approximation can fit the width and peak separation of measured line shapes, but it cannot resolve an ambiguity between electron density n_{e} and ion temperature T_{i}, since both parameters influence the strength of quasistatic ion microfields. Here a line shape model employing a full Coulomb interaction for the electron broadening computes self-consistent line widths and redshifts through the monopole term; redshifts have different dependence on plasma parameters and thus resolve the n_{e}-T_{i} ambiguity. The measured line shapes indicate densities that are 80-100% of solid, identifying a regime of highly ionized but well-tamped plasma. This analysis also provides the first strong evidence that dense ions and electrons are not in thermal equilibrium, despite equilibration times much shorter than the duration of x-ray emission; cooler ions may arise from nonclassical thermalization rates or anomalous energy transport. The experimental platform and diagnostic technique constitute a promising new approach for studying ion-electron equilibration in dense plasmas.

19.
Opt Lett ; 46(21): 5449-5452, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724498

RESUMO

We investigated the filamentation in air of 7 ps laser pulses of up to 200 mJ energy from a 1.03 µm-wavelength Yb:YAG laser at repetition rates up to f=1kHz. Interferograms of the wake generated show that while pulses in a train of repetition rate f=0.1kHz encounter a nearly unperturbed environment, at f=1kHz, a channel with an axial air density hole of ∼20% is generated and maintained at all times by the cumulative effect of preceding laser pulses. Measurements at f=1kHz show that the energy deposited decreases proportional to the air channel density depletion, becoming more pronounced as the repetition rate and pulse energy increase. Numerical simulations indicate that contrary to filaments generated by shorter duration pulses, the electron avalanche is the dominant energy loss mechanism during filamentation with 7 ps pulses. The results are of interest for the atmospheric propagation of joule-level picosecond pulses from Yb:YAG lasers, of which average powers now surpass 1 kW, and for channeling other directed energy beams.

20.
Rev Sci Instrum ; 92(3): 033525, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820090

RESUMO

Fine-structure x-ray spectra have been measured from foils with embedded tracer layers at two laser facilities. A suite of layered foils with thin Ti tracers under varied tamper layers was studied at both the Titan and the ALEPH 400 nm laser facilities, where Ti Heα emission was recorded using a high-resolution Bragg crystal spectrometer. Several indicators of plasma parameters are examined in the spectra, including temperature- and density-dependent line ratios and line broadening from Stark and opacity effects. Spectra indicate that (1) the plasma density at ALEPH is significantly higher than at Titan and (2) the electron temperature is high for near-surface layers at both facilities but drops more quickly with depth at ALEPH. These inferences of plasma conditions are consistent with differing levels of temporal contrast at each laser facility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA