Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 12(5): e0130721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607465

RESUMO

Toxoplasmosis affects one-third of the human population worldwide. Humans are accidental hosts and are infected after consumption of undercooked meat and water contaminated with Toxoplasma gondii cysts and oocysts, respectively. Neutrophils have been shown to participate in the control of T. gondii infection in mice through a variety of effector mechanisms, such as reactive oxygen species (ROS) and neutrophil extracellular trap (NET) formation. However, few studies have demonstrated the role of neutrophils in individuals naturally infected with T. gondii. In the current study, we evaluated the activation status of neutrophils in individuals with acute or chronic toxoplasmosis and determined the role of T. gondii-induced NET formation in the amplification of the innate and adaptive immune responses. We observed that neutrophils are highly activated during acute infection through increased expression of CD66b. Moreover, neutrophils from healthy donors (HDs) cocultured with tachyzoites produced ROS and formed NETs, with the latter being dependent on glycolysis, succinate dehydrogenase, gasdermin D, and neutrophil elastase. Furthermore, we observed elevated levels of the chemokines (CXC motif) CXCL8 and (CC motif) CCL4 ligands in plasma from patients with acute toxoplasmosis and production by neutrophils from HDs exposed to T. gondii. Finally, we showed that T. gondii-induced NETs activate neutrophils and promote the recruitment of autologous CD4+ T cells and the production of interferon gamma (IFN-γ), tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-17, and IL-10 by peripheral blood mononuclear cells. In conclusion, we demonstrated that T. gondii activates neutrophils and promotes the release of NETs, which amplify human innate and adaptive immune responses. IMPORTANCE Approximately one-third of the human population is estimated to be chronically infected with the obligate intracellular parasite Toxoplasma gondii. Humans are accidental hosts that are infected with T. gondii after consumption of undercooked meat or contaminated water. Neutrophils have been shown to control T. gondii growth by different mechanisms, including neutrophil extracellular traps (NETs). In the current study, we observed that neutrophils are highly activated during acute toxoplasmosis. We also determined that T. gondii-induced NETs are dependent on the energetic profile of neutrophils as well as the production of ROS and gasdermin D (GSDMD) cleavage. In addition, we showed that T. gondii-induced NETs activate neutrophils, promote the recruitment of autologous CD4+ T cells, and induce the production of cytokines by peripheral blood mononuclear cells, amplifying the innate and adaptive immune responses.


Assuntos
Imunidade Adaptativa , Armadilhas Extracelulares/imunologia , Imunidade Inata , Neutrófilos/imunologia , Toxoplasma/imunologia , Adulto , Antígenos CD/genética , Antígenos CD/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Quimiocinas/imunologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Interleucinas/classificação , Interleucinas/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Neutrófilos/parasitologia , Adulto Jovem
2.
Viruses ; 11(11)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739467

RESUMO

Viral isolation is desirable for many reasons, including development of diagnostic assays and reference materials, and for virology basic research. Zika virus (ZIKV) isolation from clinical samples is challenging, but isolates are known to infect various cell lines. Here, we evaluated suitability of Vero, C6/36 and JEG-3 as host cells, for direct isolation of ZIKV from human plasma. We also assessed the use of primary monocyte-derived macrophages (MDMs) culture to enhance ZIKV isolation from human plasma samples followed by virus expansion in Vero, C6/36 and JEG-3 cultures. Direct inoculation of cell lines with 42 ZIKV-RNA positive samples resulted in isolation rates of 9.52% (4/42) in Vero and C6/36, and of 7.14% (3/42) in JEG-3 cells. Inoculation of plasma in MDMs followed by supernatant testing by TaqMan RT-PCR, resulted in 33/42 (78.57%) ZIKV-RNA-positive supernatants, which expansion in cell lines increased isolation rates to 24.24% (8/33) in Vero and to 27.27% (9/33) in C6/36 and JEG-3 regardless of the presence of ZIKV-antibody. Isolates generated in JEG-3 cells were also produced in Vero and C6/36 with similar viral titers. These results suggest that efficiency of ZIKV isolation from human plasma can be enhanced when MDM culture is used before viral expansion in cell lines.


Assuntos
Macrófagos/virologia , Replicação Viral , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , Zika virus/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , RNA Viral , Células Vero , Carga Viral
3.
Environ Pollut ; 235: 771-779, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29351888

RESUMO

Waters from the Amazon Basin have distinct physicochemical characteristics that can be optically classified as "black", "clear" and "white". We studied the distribution of total-Hg (THg) and methyl-Hg (MeHg) in these waters and respective suspended solids, sediment, phytoplankton, zooplankton, and benthic macroinvertebrates (BM) in the Madeira River Basin. Compared with the other types of water, the more acidic "black" kind had the highest THg and MeHg concentrations. The trend (black > clear > white) occurred for the concentrations of THg and MeHg in sediments and in the biotic compartment (plankton, macroinvertebrates). Organic Hg accounted for a small percentage (0.6-0.4%) of the THg in sediments but was highest in water (17-15%). For plankton and BM, the biota sediment accumulation factor (BSAFs) of MeHg (53-125) were greater than those of THg (4.5-15); however, the BSAF trend according to water type (black > clear > white) was only significant for MeHg. Sediment THg is correlated with all forms of Hg in biotic and abiotic matrices. The results indicate that water acidity in the Amazon is an important chemical characteristic in assessing Hg contamination of sediments and bioaccumulation in the aquatic food web. The differences in the BSAFs between THg and MeHg support the use of this factor for evaluating the bioaccumulation potential of sediment-bound Hg. The results add information critical to assessing environmental and health risks related to Hg methylation and potential fish-MeHg contamination, especially in tropical aquatic environments.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental/métodos , Peixes , Cadeia Alimentar , Sedimentos Geológicos/química , Plâncton , Rios , Zooplâncton
4.
mBio ; 6(6): e01605-15, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578679

RESUMO

UNLABELLED: High levels of circulating immunocomplexes (ICs) are found in patients with either infectious or sterile inflammation. We report that patients with either Plasmodium falciparum or Plasmodium vivax malaria have increased levels of circulating anti-DNA antibodies and ICs containing parasite DNA. Upon stimulation with malaria-induced ICs, monocytes express an NF-κB transcriptional signature. The main source of IC-induced proinflammatory cytokines (i.e., tumor necrosis factor alpha [TNF-α] and interleukin-1ß [IL-1ß])in peripheral blood mononuclear cells from acute malaria patients was found to be a CD14(+) CD16 (FcγRIIIA)(+) CD64 (FcγRI)(high) CD32 (FcγRIIB)(low) monocyte subset. Monocytes from convalescent patients were predominantly of the classical phenotype (CD14(+) CD16(-)) that produces high levels of IL-10 and lower levels of TNF-α and IL-1ß in response to ICs. Finally, we report a novel role for the proinflammatory activity of ICs by demonstrating their ability to induce inflammasome assembly and caspase-1 activation in human monocytes. These findings illuminate our understanding of the pathogenic role of ICs and monocyte subsets and may be relevant for future development of immunity-based interventions with broad applications to systemic inflammatory diseases. IMPORTANCE: Every year, there are approximately 200 million cases of Plasmodium falciparum and P. vivax malaria, resulting in nearly 1 million deaths, most of which are children. Decades of research on malaria pathogenesis have established that the clinical manifestations are often a consequence of the systemic inflammation elicited by the parasite. Recent studies indicate that parasite DNA is a main proinflammatory component during infection with different Plasmodium species. This finding resembles the mechanism of disease in systemic lupus erythematosus, where host DNA plays a central role in stimulating an inflammatory process and self-damaging reactions. In this study, we disclose the mechanism by which ICs containing Plasmodium DNA activate innate immune cells and consequently stimulate systemic inflammation during acute episodes of malaria. Our results further suggest that Toll-like receptors and inflammasomes have a central role in malaria pathogenesis and provide new insights toward developing novel therapeutic interventions for this devastating disease.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Citocinas/metabolismo , DNA de Protozoário/imunologia , Inflamassomos/metabolismo , Malária Falciparum/patologia , Malária Vivax/patologia , Monócitos/metabolismo , Complexo Antígeno-Anticorpo/sangue , Antígenos CD/análise , Humanos , Imunofenotipagem , Malária Falciparum/imunologia , Malária Vivax/imunologia , Monócitos/química , Multimerização Proteica
5.
Microbes Infect ; 17(3): 184-94, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25462568

RESUMO

In malaria, the evidence concerning the nucleotide-binding, oligomerization domain (NOD) 2 (NOD2) receptor is fragmented and the stimuli that might activate NOD2 are not well characterized. We investigated the role of NOD2 in vitro in the response of macrophages to Plasmodium falciparum products. Immortalized or primary bone marrow derived macrophages from wild type C57Bl/6 mice, or knockout mice for NOD2 or its adaptor proteins, were either primed with interferon gamma or left untreated, and stimulated with parasite products. Both lysates of infected erythrocytes or hemozoin induced higher levels of nitric oxide in primed than in unprimed wild type macrophages. When stimulated with hemozoin, primed macrophages knockout for NOD2, or for its adaptor proteins, produced significantly lower nitric oxide levels compared to wild type cells. Differently from hemozoin, the use of ß-hematin (synthetic hemozoin) as stimulus showed that NOD2 is dispensable. Furthermore, the production of inflammatory cytokines by wild type cells treated with hemozoin was not dependent on NOD2. These data indicate that parasite components present in the hemozoin, differently from ß-hematin, induce the production of nitric oxide through the activation of NOD2, whereas the production of inflammatory cytokines, like TNF-α or MIP-2 (CXCL2), seems to be NOD2 independent.


Assuntos
Hemeproteínas/imunologia , Malária/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Animais , Citocinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/imunologia
6.
PLoS Pathog ; 10(9): e1004393, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25233271

RESUMO

Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+)CD16- (classical), CD14(+)CD16(+) (inflammatory), and CD14loCD16(+) (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+) cells, in particular the CD14(+)CD16(+) monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+) were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+)CD16(+) monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+)CD16(+) cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.


Assuntos
Eritrócitos/imunologia , Inflamação/imunologia , Receptores de Lipopolissacarídeos/imunologia , Malária Vivax/imunologia , Mitocôndrias/imunologia , Monócitos/imunologia , Plasmodium vivax/imunologia , Receptores de IgG/imunologia , Doença Aguda , Adolescente , Adulto , Idoso , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Malária Vivax/metabolismo , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Monócitos/metabolismo , Monócitos/parasitologia , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
7.
An Acad Bras Cienc ; 85(3): 1053-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24068092

RESUMO

An abnormally high shark attack rate verified off Recife could be related to migratory behavior of tiger sharks. This situation started after the construction of the Suape port to the south of Recife. A previous study suggested that attacking sharks could be following northward currents and that they were being attracted shoreward by approaching vessels. In this scenario, such northward movement pattern could imply a higher probability of sharks accessing the littoral area of Recife after leaving Suape. Pop-up satellite archival tags were deployed on five tiger sharks caught off Recife to assess their movement patterns off northeastern Brazil. All tags transmitted from northward latitudes after 7-74 days of freedom. The shorter, soak distance between deployment and pop-up locations ranged between 33-209 km and implied minimum average speeds of 0.02-0.98 km.h-1. Both pop-up locations and depth data suggest that tiger shark movements were conducted mostly over the continental shelf. The smaller sharks moved to deeper waters within 24 hours after releasing, but they assumed a shallower (< 50 m) vertical distribution for most of the monitoring period. While presenting the first data on tiger shark movements in the South Atlantic, this study also adds new information for the reasoning of the high shark attack rate verified in this region.


Assuntos
Migração Animal/fisiologia , Tubarões/fisiologia , Animais , Mordeduras e Picadas/epidemiologia , Brasil , Comunicações Via Satélite , Tubarões/classificação , Movimentos da Água
8.
Cell ; 139(7): 1268-78, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20064373

RESUMO

Wolbachia are maternally inherited intracellular bacterial symbionts that are estimated to infect more than 60% of all insect species. While Wolbachia is commonly found in many mosquitoes it is absent from the species that are considered to be of major importance for the transmission of human pathogens. The successful introduction of a life-shortening strain of Wolbachia into the dengue vector Aedes aegypti that halves adult lifespan has recently been reported. Here we show that this same Wolbachia infection also directly inhibits the ability of a range of pathogens to infect this mosquito species. The effect is Wolbachia strain specific and relates to Wolbachia priming of the mosquito innate immune system and potentially competition for limiting cellular resources required for pathogen replication. We suggest that this Wolbachia-mediated pathogen interference may work synergistically with the life-shortening strategy proposed previously to provide a powerful approach for the control of insect transmitted diseases.


Assuntos
Aedes/microbiologia , Vírus Chikungunya/fisiologia , Vírus da Dengue/fisiologia , Plasmodium gallinaceum/fisiologia , Wolbachia/fisiologia , Aedes/parasitologia , Aedes/fisiologia , Aedes/virologia , Animais , Interações Hospedeiro-Parasita , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA