Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 46(16): 3905-3908, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388771

RESUMO

Light scattering by disordered media is a ubiquitous effect. After passing through them, the light acquires a random phase, masking or destroying associated information. Filtering this random phase is of paramount importance to many applications, such as sensing, imaging, and optical communication, to cite a few, and it is commonly achieved through computationally extensive post-processing using statistical correlation. In this work, we show that mixing noisy optical modes of various complexity in a second-order nonlinear medium can be used for efficient and straightforward filtering of a random wavefront under sum-frequency generation processes without utilizing correlation-based calculations.

2.
Opt Lett ; 45(14): 4064-4067, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667355

RESUMO

By considering parity-defined Laguerre-Gaussian (LG) and Hermite-Gaussian (HG) beams as input modes, we present arguments through experimental and theoretical results in order to affirm that using HG modes as bases is more suitable for optical mode conversion than using LG modes. By analyzing the normalized overlap integral and the generated modes, we determine a clear rule for the dominant mode for nonlinear mixing of HG beams, while the same is not possible for LG beams. In addition, examples of optical modal conversion using both HG and LG modes as input beams are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA