Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Intensive Care Med Exp ; 11(1): 93, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102452

RESUMO

BACKGROUND: We aimed to evaluate the pulmonary and cerebral effects of low-tidal volume ventilation in pressure-support (PSV) and pressure-controlled (PCV) modes at two PEEP levels in acute ischemic stroke (AIS). METHODS: In this randomized experimental study, AIS was induced by thermocoagulation in 30 healthy male Wistar rats. After 24 h, AIS animals were randomly assigned to PSV or PCV with VT = 6 mL/kg and PEEP = 2 cmH2O (PSV-PEEP2 and PCV-PEEP2) or PEEP = 5 cmH2O (PSV-PEEP5 and PCV-PEEP5) for 2 h. Lung mechanics, arterial blood gases, and echocardiography were evaluated before and after the experiment. Lungs and brain tissue were removed for histologic and molecular biology analysis. The primary endpoint was diffuse alveolar damage (DAD) score; secondary endpoints included brain histology and brain and lung molecular biology markers. RESULTS: In lungs, DAD was lower with PSV-PEEP5 than PCV-PEEP5 (p < 0.001); interleukin (IL)-1ß was lower with PSV-PEEP2 than PCV-PEEP2 (p = 0.016) and PSV-PEEP5 than PCV-PEEP5 (p = 0.046); zonula occludens-1 (ZO-1) was lower in PCV-PEEP5 than PCV-PEEP2 (p = 0.042). In brain, necrosis, hemorrhage, neuropil edema, and CD45 + microglia were lower in PSV than PCV animals at PEEP = 2 cmH2O (p = 0.036, p = 0.025, p = 0.018, p = 0.011, respectively) and PEEP = 5 cmH2O (p = 0.003, p = 0.003, p = 0.007, p = 0.003, respectively); IL-1ß was lower while ZO-1 was higher in PSV-PEEP2 than PCV-PEEP2 (p = 0.009, p = 0.007, respectively), suggesting blood-brain barrier integrity. Claudin-5 was higher in PSV-PEEP2 than PSV-PEEP5 (p = 0.036). CONCLUSION: In experimental AIS, PSV compared with PCV reduced lung and brain injury. Lung ZO-1 reduced in PCV with PEEP = 2 versus PEEP = 5 cmH2O, while brain claudin-5 increased in PSV with PEEP = 2 versus PEEP = 5 cmH2O.

2.
Front Physiol ; 13: 992401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388107

RESUMO

Background: Fluid regimens in acute respiratory distress syndrome (ARDS) are conflicting. The amount of fluid and positive end-expiratory pressure (PEEP) level may interact leading to ventilator-induced lung injury (VILI). We therefore evaluated restrictive and liberal fluid strategies associated with low and high PEEP levels with regard to lung and kidney damage, as well as cardiorespiratory function in endotoxin-induced ARDS. Methods: Thirty male Wistar rats received an intratracheal instillation of Escherichia coli lipopolysaccharide. After 24 h, the animals were anesthetized, protectively ventilated (VT = 6 ml/kg), and randomized to restrictive (5 ml/kg/h) or liberal (40 ml/kg/h) fluid strategies (Ringer lactate). Both groups were then ventilated with PEEP = 3 cmH2O (PEEP3) and PEEP = 9 cmH2O (PEEP9) for 1 h (n = 6/group). Echocardiography, arterial blood gases, and lung mechanics were evaluated throughout the experiments. Histologic analyses were done on the lungs, and molecular biology was assessed in lungs and kidneys using six non-ventilated animals with no fluid therapy. Results: In lungs, the liberal group showed increased transpulmonary plateau pressure compared with the restrictive group (liberal, 23.5 ± 2.9 cmH2O; restrictive, 18.8 ± 2.3 cmH2O, p = 0.046) under PEEP = 9 cmH2O. Gene expression associated with inflammation (interleukin [IL]-6) was higher in the liberal-PEEP9 group than the liberal-PEEP3 group (p = 0.006) and restrictive-PEEP9 (p = 0.012), Regardless of the fluid strategy, lung mechanical power and the heterogeneity index were higher, whereas birefringence for claudin-4 and zonula-ocludens-1 gene expression were lower in the PEEP9 groups. Perivascular edema was higher in liberal groups, regardless of PEEP levels. Markers related to damage to epithelial cells [club cell secreted protein (CC16)] and the extracellular matrix (syndecan) were higher in the liberal-PEEP9 group than the liberal-PEEP3 group (p = 0.010 and p = 0.024, respectively). In kidneys, the expression of IL-6 and neutrophil gelatinase-associated lipocalin was higher in PEEP9 groups, regardless of the fluid strategy. For the liberal strategy, PEEP = 9 cmH2O compared with PEEP = 3 cmH2O reduced the right ventricle systolic volume (37%) and inferior vena cava collapsibility index (45%). Conclusion: The combination of a liberal fluid strategy and high PEEP led to more lung damage. The application of high PEEP, regardless of the fluid strategy, may also be deleterious to kidneys.

3.
J Appl Physiol (1985) ; 132(2): 375-387, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34941443

RESUMO

Increases in positive end-expiratory pressure (PEEP) or recruitment maneuvers may increase stress in lung parenchyma, extracellular matrix, and lung vessels; however, adaptative responses may occur. We evaluated the effects of PEEP on lung damage and cardiac function when increased abruptly, gradually, or more gradually in experimental mild/moderate acute respiratory distress syndrome (ARDS) induced by Escherichia coli lipopolysaccharide intratracheally. After 24 h, Wistar rats (n = 48) were randomly assigned to four mechanical ventilation strategies according to PEEP levels: 1) 3 cmH2O for 2 h (control); 2) 3 cmH2O for 1 h followed by an abrupt increase to 9 cmH2O for 1 h (no adaptation time); 3) 3 cmH2O for 30 min followed by a gradual increase to 9 cmH2O over 30 min then kept constant for 1 h (shorter adaptation time); and 4) more gradual increase in PEEP from 3 cmH2O to 9 cmH2O over 1 h and kept constant thereafter (longer adaptation time). At the end of the experiment, oxygenation improved in the shorter and longer adaptation time groups compared with the no-adaptation and control groups. Diffuse alveolar damage and expressions of interleukin-6, club cell protein-16, vascular cell adhesion molecule-1, amphiregulin, decorin, and syndecan were higher in no adaptation time compared with other groups. Pulmonary arterial pressure was lower in longer adaptation time than in no adaptation (P = 0.002) and shorter adaptation time (P = 0.025) groups. In this model, gradually increasing PEEP limited lung damage and release of biomarkers associated with lung epithelial/endothelial cell and extracellular matrix damage, as well as the PEEP-associated increase in pulmonary arterial pressure.NEW & NOTEWORTHY In a rat model of Escherichia coli lipopolysaccharide-induced mild/moderate acute respiratory distress syndrome, a gradual PEEP increase (shorter adaptation time) effectively mitigated histological lung injury and biomarker release associated with lung inflammation, damage to epithelial cells, endothelial cells, and the extracellular matrix compared with an abrupt increase in PEEP. A more gradual PEEP increase (longer adaptation time) decreased lung damage, pulmonary vessel compression, and pulmonary arterial pressure.


Assuntos
Células Endoteliais , Síndrome do Desconforto Respiratório , Animais , Ratos , Pulmão , Respiração com Pressão Positiva , Ratos Wistar , Síndrome do Desconforto Respiratório/terapia
4.
PLoS One ; 16(8): e0256021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415935

RESUMO

BACKGROUND: We hypothesized that a decrease in frequency of controlled breaths during biphasic positive airway pressure (BIVENT), associated with an increase in spontaneous breaths, whether pressure support (PSV)-assisted or not, would mitigate lung and diaphragm damage in mild experimental acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS: Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 hours, animals were randomly assigned to: 1) BIVENT-100+PSV0%: airway pressure (Phigh) adjusted to VT = 6 mL/kg and frequency of controlled breaths (f) = 100 bpm; 2) BIVENT-50+PSV0%: Phigh adjusted to VT = 6 mL/kg and f = 50 bpm; 3) BIVENT-50+PSV50% (PSV set to half the Phigh reference value, i.e., PSV50%); or 4) BIVENT-50+PSV100% (PSV equal to Phigh reference value, i.e., PSV100%). Positive end-expiratory pressure (Plow) was equal to 5 cmH2O. Nonventilated animals were used for lung and diaphragm histology and molecular biology analysis. RESULTS: BIVENT-50+PSV0%, compared to BIVENT-100+PSV0%, reduced the diffuse alveolar damage (DAD) score, the expression of amphiregulin (marker of alveolar stretch) and muscle atrophy F-box (marker of diaphragm atrophy). In BIVENT-50 groups, the increase in PSV (BIVENT-50+PSV50% versus BIVENT-50+PSV100%) yielded better lung mechanics and less alveolar collapse, interstitial edema, cumulative DAD score, as well as gene expressions associated with lung inflammation, epithelial and endothelial cell damage in lung tissue, and muscle ring finger protein 1 (marker of muscle proteolysis) in diaphragm. Transpulmonary peak pressure (Ppeak,L) and pressure-time product per minute (PTPmin) at Phigh were associated with lung damage, while increased spontaneous breathing at Plow did not promote lung injury. CONCLUSION: In the ARDS model used herein, during BIVENT, the level of PSV and the phase of the respiratory cycle in which the inspiratory effort occurs affected lung and diaphragm damage. Partitioning of inspiratory effort and transpulmonary pressure in spontaneous breaths at Plow and Phigh is required to minimize VILI.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/métodos , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Aguda/patologia , Animais , Diafragma/patologia , Endotélio/patologia , Pulmão/patologia , Masculino , Ratos , Ratos Wistar , Respiração , Síndrome do Desconforto Respiratório/fisiopatologia , Volume de Ventilação Pulmonar/fisiologia
5.
Respir Res ; 22(1): 214, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330283

RESUMO

BACKGROUND: We evaluated the effects of abrupt versus gradual PEEP decrease, combined with standard versus high-volume fluid administration, on cardiac function, as well as lung and kidney damage in an established model of mild-moderate acute respiratory distress syndrome (ARDS). METHODS: Wistar rats received endotoxin intratracheally. After 24 h, they were treated with Ringer's lactate at standard (10 mL/kg/h) or high (30 mL/kg/h) dose. For 30 min, all animals were mechanically ventilated with tidal volume = 6 mL/kg and PEEP = 9 cmH2O (to keep alveoli open), then randomized to undergo abrupt or gradual (0.2 cmH2O/min for 30 min) PEEP decrease from 9 to 3 cmH2O. Animals were then further ventilated for 10 min at PEEP = 3 cmH2O, euthanized, and their lungs and kidneys removed for molecular biology analysis. RESULTS: At the end of the experiment, left and right ventricular end-diastolic areas were greater in animals treated with high compared to standard fluid administration, regardless of PEEP decrease rate. However, pulmonary arterial pressure, indicated by the pulmonary acceleration time (PAT)/pulmonary ejection time (PET) ratio, was higher in abrupt compared to gradual PEEP decrease, independent of fluid status. Animals treated with high fluids and abrupt PEEP decrease exhibited greater diffuse alveolar damage and higher expression of interleukin-6 (a pro-inflammatory marker) and vascular endothelial growth factor (a marker of endothelial cell damage) compared to the other groups. The combination of standard fluid administration and gradual PEEP decrease increased zonula occludens-1 expression, suggesting epithelial cell preservation. Expression of club cell-16 protein, an alveolar epithelial cell damage marker, was higher in abrupt compared to gradual PEEP decrease groups, regardless of fluid status. Acute kidney injury score and gene expression of kidney injury molecule-1 were higher in the high versus standard fluid administration groups, regardless of PEEP decrease rate. CONCLUSION: In the ARDS model used herein, decreasing PEEP abruptly increased pulmonary arterial hypertension, independent of fluid status. The combination of abrupt PEEP decrease and high fluid administration led to greater lung and kidney damage. This information adds to the growing body of evidence that supports gradual transitioning of ventilatory patterns and warrants directing additional investigative effort into vascular and deflation issues that impact lung protection.


Assuntos
Coração/fisiopatologia , Rim/fisiopatologia , Pulmão/fisiopatologia , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Coração/efeitos dos fármacos , Infusões Intravenosas , Rim/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/terapia , Lactato de Ringer/administração & dosagem , Lactato de Ringer/toxicidade , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
6.
J Dev Orig Health Dis ; 12(3): 523-529, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32900421

RESUMO

Literature describes breast milk as the best food for the newborn, recommending exclusive breastfeeding for up to 6 months of age. However, it is not available for more than 40% of children worldwide. Pharmacological and non-pharmacological models of 3-day early weaning were developed in rodents to investigate later outcomes related solely to this nutritional insult. Thus, the present work aimed to describe biometric, nutritional, biochemical, and cardiovascular outcomes in adult male rats submitted to 3-day early weaning achieved by maternal deprivation. This experimental model comprises not only nutritional insult but also emotional stress, simulating mother abandoning. Male offspring were physically separated from their mothers at 21st (control) or 18th (early weaning) postnatal day, receiving water/food ad libitum. Analysis performed at postnatal days 30, 90, 150, and 365 encompassed body mass and food intake monitoring and serum biochemistry determination. Further assessments included hemodynamic, echocardiographic, and cardiorespiratory evaluation. Early-weaned males presented higher body weight when compared to control as well as dyslipidemia, higher blood pressure, diastolic dysfunction, and cardiac hypertrophy in adult life. Animals early deprived of their mothers have also presented a worse performance on the maximal effort ergometer test. This work shows that 3-day early maternal deprivation favors the development of cardiovascular disease in male rats.


Assuntos
Doenças Cardiovasculares/etiologia , Suscetibilidade a Doenças/etiologia , Privação Materna , Animais , Biometria , Ecocardiografia , Ergometria , Feminino , Masculino , Desnutrição , Gravidez , Angústia Psicológica , Ratos , Ratos Wistar , Desmame
7.
Front Neurol ; 11: 1001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013661

RESUMO

Background: There is widespread debate regarding the use of albumin in ischemic stroke. We tested the hypothesis that an iso-oncotic solution of albumin (5%), administered earlier after acute ischemic stroke (3 h), could provide neuroprotection without causing kidney damage, compared to a hyper-oncotic albumin (20%) and saline. Objective: To compare the effects of saline, iso-oncotic albumin, and hyper-oncotic albumin, all titrated to similar hemodynamic targets, on the brain and kidney. Methods: Ischemic stroke was induced in anesthetized male Wistar rats (n = 30; weight 437 ± 68 g) by thermocoagulation of pial blood vessels of the primary somatosensory, motor, and sensorimotor cortices. After 3 h, animals were anesthetized and randomly assigned (n = 8) to receive 0.9% NaCl (Saline), iso-oncotic albumin (5% ALB), and hyper-oncotic albumin (20% ALB), aiming to maintain hemodynamic stability (defined as distensibility index of inferior vena cava <25%, mean arterial pressure >80 mmHg). Rats were then ventilated using protective strategies for 2 h. Of these 30 animals, 6 were used as controls (focal ischemic stroke/no fluid). Results: The total fluid volume infused was higher in the Saline group than in the 5% ALB and 20% ALB groups (mean ± SD, 4.3 ± 1.6 vs. 2.7 ± 0.6 and 2.6 ± 0.5 mL, p = 0.03 and p = 0.02, respectively). The total albumin volume infused (g/kg) was higher in the 20% ALB group than in the 5% ALB group (1.4 ± 0.6 vs. 0.4 ± 0.2, p < 0.001). Saline increased neurodegeneration (Fluoro-Jade C staining), brain inflammation in the penumbra (higher tumor necrosis factor-alpha expression), and blood-brain barrier damage (lower gene expressions of claudin-1 and zona occludens-1) compared to both iso-oncotic and hyper-oncotic albumins, whereas it reduced the expression of brain-derived neurotrophic factor (a marker of neuroregeneration) compared only to iso-oncotic albumin. In the kidney, hyper-oncotic albumin led to greater damage as well as higher gene expressions of kidney injury molecule-1 and interleukin-6 than 5% ALB (p < 0.001). Conclusions: In this model of focal ischemic stroke, only iso-oncotic albumin had a protective effect against brain and kidney damage. Fluid therapy thus requires careful analysis of impact not only on the brain but also on the kidney.

8.
J Appl Physiol (1985) ; 129(5): 1062-1074, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909923

RESUMO

Obesity is associated with bioenergetic dysfunction of peripheral muscles; however, little is known regarding the impact of obesity on the diaphragm. We hypothesized that obesity would be associated with diaphragm dysfunction attributable to mitochondrial oxygen consumption and structural and ultrastructural changes. Wistar rat litters were culled to 3 pups to induce early postnatal overfeeding and consequent obesity. Control animals were obtained from unculled litters. From postnatal day 150, diaphragm ultrasound, computed tomography, high-resolution respirometry, immunohistochemical, biomolecular, and ultrastructural histological analyses were performed. The diaphragms of obese animals, compared with those of controls, presented changes in morphology as increased thickening fraction, diaphragm excursion, and diaphragm dome height, as well as increased mitochondrial respiratory capacity coupled to ATP synthesis and maximal respiratory capacity. Fatty acid synthase gene expression was also higher in obese animals, suggesting a source of energy for the respiratory chain. Myosin heavy chain-IIA was increased, indicating shift from glycolytic toward oxidative muscle fiber profile. Diaphragm tissue also exhibited ultrastructural changes, such as compact, round, and swollen mitochondria with fainter cristae and more lysosomal bodies. Dynamin-1 expression in the diaphragm was reduced in obese rats, suggesting decreased mitochondrial fission. Furthermore, gene expressions of peroxisome γ proliferator-activated receptor coactivator-1α and superoxide dismutase-2 were lower in obese animals than in controls, which may indicate a predisposition to oxidative injury. In conclusion, in the obesity model used herein, muscle fiber phenotype was altered in a manner likely associated with increased mitochondrial respiratory capability, suggesting respiratory adaptation to increased metabolic demand.NEW & NOTEWORTHY Obesity has been associated with peripheral muscle dysfunction; however, little is known about its impact on the diaphragm. In the current study, we found high oxygen consumption in diaphragm tissue and changes in muscle fiber phenotypes toward a more oxidative profile in experimental obesity.


Assuntos
Diafragma , Obesidade , Animais , Diafragma/metabolismo , Metabolismo Energético , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Ratos , Ratos Wistar
9.
J Nutr Sci ; 9: e27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742644

RESUMO

Litter size reduction can induce early overnourishment, being an attractive experimental model to study short- and long-term consequences of childhood obesity. Epidemiological data indicate sex differences regarding cardiometabolic disorders and hypertrophic cardiomyopathy. The present study aimed to describe biometric, nutritional and cardiovascular changes related to neonatal overweight promoted by litter size reduction in young and adult Wistar rats of both sexes. Litter adjustment to eight or four pups/mother (1:1 male-to-female ratio) gave, respectively, control and overweight groups. Body mass, food intake, haemodynamic and echocardiographic parameters and cardiorespiratory capacity were evaluated at postnatal days 30 and 150. Diminished litters were correlated with higher body mass and weight gain (12 %) during lactation, validating the experimental model of neonatal overweight. Soon after weaning male (16 %) and female (25 %) offspring of these litters presented a lower food intake than their respective control, without differences in body mass. Adult males from reduced litters presented higher abdominal circumference (7 %), systolic blood pressure (10 %), interventricular septum thickness (15 %) and relative wall thickness (15 %) compared with their respective control. Rats' performance on the maximal effort ergometer test was not affected by neonatal overweight. Data suggest the occurrence of catch-down growth and hypophagia in male and female rats submitted to neonatal overweight. However, only male rats presented haemodynamic and cardiac structural changes. These findings are crucial to personalised/gender medicine.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Lactação , Obesidade/fisiopatologia , Fatores Etários , Animais , Feminino , Tamanho da Ninhada de Vivíparos , Masculino , Sobrepeso , Gravidez , Ratos , Ratos Wistar , Caracteres Sexuais
10.
Respir Res ; 20(1): 155, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311539

RESUMO

BACKGROUND: Conflicting data have reported beneficial effects of crystalloids, hyper-oncotic albumin (20%ALB), and iso-oncotic albumin (5%ALB) in critically ill patients. Although hyper-oncotic albumin may minimize lung injury, recent studies have shown that human albumin may lead to kidney damage proportional to albumin concentration. In this context, we compared the effects of Ringer's lactate (RL), 20%ALB, and 5%ALB, all titrated according to similar hemodynamic goals, on pulmonary function, lung and kidney histology, and molecular biology in experimental acute lung injury (ALI). METHODS: Male Wistar rats received Escherichia coli lipopolysaccharide intratracheally (n = 24) to induce ALI. After 24 h, animals were anesthetized and randomly assigned to receive RL, 20%ALB, or 5%ALB (n = 6/group) to maintain hemodynamic stability (distensibility index of inferior vena cava < 25%, mean arterial pressure > 65 mmHg). Rats were then mechanically ventilated for 6 h. Six animals, which received neither ventilation nor fluids (NV), were used for molecular biology analyses. RESULTS: The total fluid volume infused was higher in RL compared to 5%ALB and 20%ALB (median [interquartile range], 10.8[8.2-33.2] vs. 4.8[3.6-7.7] and 4.3[3.9-6.6] mL, respectively; p = 0.02 and p = 0.003). B-line counts on lung ultrasound (p < 0.0001 and p = 0.0002) and serum lactate levels (p = 0.01 and p = 0.01) were higher in RL than 5%ALB and 20%ALB. Diffuse alveolar damage score was lower in 5%ALB (10.5[8.5-12]) and 20%ALB (10.5[8.5-14]) than RL (16.5[12.5-20.5]) (p < 0.05 and p = 0.03, respectively), while acute kidney injury score was lower in 5%ALB (9.5[6.5-10]) than 20%ALB (18[15-28.5], p = 0.0006) and RL (16 [15-19], p = 0.04). In lung tissue, mRNA expression of interleukin (IL)-6 was higher in RL (59.1[10.4-129.3]) than in 5%ALB (27.0[7.8-49.7], p = 0.04) or 20%ALB (3.7[7.8-49.7], p = 0.03), and IL-6 protein levels were higher in RL than 5%ALB and 20%ALB (p = 0.026 and p = 0.021, respectively). In kidney tissue, mRNA expression and protein levels of kidney injury molecule (KIM)-1 were lower in 5%ALB than RL and 20%ALB, while nephronectin expression increased (p = 0.01 and p = 0.01), respectively. CONCLUSIONS: In a rat model of ALI, both iso-oncotic and hyper-oncotic albumin solutions were associated with less lung injury compared to Ringer's lactate. However, hyper-oncotic albumin resulted in greater kidney damage than iso-oncotic albumin. This experimental study is a step towards future clinical designs.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Albuminas/toxicidade , Soluções Cristaloides/toxicidade , Animais , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
11.
Anesthesiology ; 130(5): 767-777, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870161

RESUMO

BACKGROUND: This study hypothesized that, in experimental mild acute respiratory distress syndrome, lung damage caused by high tidal volume (VT) could be attenuated if VT increased slowly enough to progressively reduce mechanical heterogeneity and to allow the epithelial and endothelial cells, as well as the extracellular matrix of the lung to adapt. For this purpose, different strategies of approaching maximal VT were tested. METHODS: Sixty-four Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomly assigned to receive mechanical ventilation with VT = 6 ml/kg for 2 h (control); VT = 6 ml/kg during hour 1 followed by an abrupt increase to VT = 22 ml/kg during hour 2 (no adaptation time); VT = 6 ml/kg during the first 30 min followed by a gradual VT increase up to 22 ml/kg for 30 min, then constant VT = 22 ml/kg during hour 2 (shorter adaptation time); and a more gradual VT increase, from 6 to 22 ml/kg during hour 1 followed by VT = 22 ml/kg during hour 2 (longer adaptation time). All animals were ventilated with positive end-expiratory pressure of 3 cm H2O. Nonventilated animals were used for molecular biology analysis. RESULTS: At 2 h, diffuse alveolar damage score and heterogeneity index were greater in the longer adaptation time group than in the control and shorter adaptation time animals. Gene expression of interleukin-6 favored the shorter (median [interquartile range], 12.4 [9.1-17.8]) adaptation time compared with longer (76.7 [20.8 to 95.4]; P = 0.02) and no adaptation (65.5 [18.1 to 129.4]) time (P = 0.02) strategies. Amphiregulin, metalloproteinase-9, club cell secretory protein-16, and syndecan showed similar behavior. CONCLUSIONS: In experimental mild acute respiratory distress syndrome, lung damage in the shorter adaptation time group compared with the no adaptation time group was attenuated in a time-dependent fashion by preemptive adaptation of the alveolar epithelial cells and extracellular matrix. Extending the adaptation period increased cumulative power and did not prevent lung damage, because it may have exposed animals to injurious strain earlier and for a longer time, thereby negating any adaptive benefit.


Assuntos
Lesão Pulmonar/prevenção & controle , Volume de Ventilação Pulmonar , Adaptação Fisiológica , Animais , Interleucina-6/genética , Masculino , Respiração com Pressão Positiva , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/complicações , Volume de Ventilação Pulmonar/fisiologia
12.
Stem Cell Res Ther ; 9(1): 296, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409216

RESUMO

BACKGROUND: A single administration of mesenchymal stromal cells (MSCs) has been shown to reduce lung inflammation in experimental elastase-induced emphysema; however, effects were limited in terms of lung-tissue repair and cardiac function improvement. We hypothesized that two doses of MSCs could induce further lung and cardiovascular repair by mitigating inflammation and remodeling in a model of emphysema induced by multiple elastase instillations. We aimed to comparatively investigate the effects of one versus two doses of MSCs, administered 1 week apart, in a murine model of elastase-induced emphysema. METHODS: C57BL/6 mice were randomly divided into control (CTRL) and emphysema (E) groups. Mice in the E group received porcine pancreatic elastase (0.2 IU, 50 µL) intratracheally once weekly for four consecutive weeks; the CTRL animals received sterile saline (50 µL) using the same protocol. Three hours after the last instillation, the E group was further randomized to receive either saline (SAL) or murine MSCs (105 cells) intratracheally, in one or two doses (1 week apart). Fourteen days later, mice were euthanized, and all data analyzed. RESULTS: Both one and two doses of MSCs improved lung mechanics, reducing keratinocyte-derived chemokine and transforming growth factor-ß levels in lung homogenates, total cell and macrophage counts in bronchoalveolar lavage fluid (BALF), and collagen fiber content in airways and blood vessels, as well as increasing vascular endothelial growth factor in lung homogenates and elastic fiber content in lung parenchyma. However, only the two-dose group exhibited reductions in tumor necrosis factor-α in lung tissue, BALF neutrophil and lymphocyte count, thymus weight, and total cellularity, as well as CD8+ cell counts and cervical lymph node CD4+ and CD8+ T cell counts, as well as further increased elastic fiber content in the lung parenchyma and reduced severity of pulmonary arterial hypertension. CONCLUSIONS: Two doses of MSCs enhanced lung repair and improvement in cardiac function, while inducing T cell immunosuppression, mainly of CD8+ cells, in elastase-induced emphysema.


Assuntos
Sistema Cardiovascular/patologia , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Enfisema Pulmonar/terapia , Cicatrização , Animais , Líquido da Lavagem Broncoalveolar , Sistema Cardiovascular/fisiopatologia , Colágeno/metabolismo , Elastina/biossíntese , Feminino , Terapia de Imunossupressão , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Pulmão/fisiopatologia , Tecido Linfoide/patologia , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/patologia , Enfisema Pulmonar/fisiopatologia
13.
Crit Care ; 22(1): 249, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290827

RESUMO

BACKGROUND: Ischemic stroke causes brain inflammation, which we postulate may result in lung damage. Several studies have focused on stroke-induced immunosuppression and lung infection; however, the possibility that strokes may trigger lung inflammation has been overlooked. We hypothesized that even focal ischemic stroke might induce acute systemic and pulmonary inflammation, thus altering respiratory parameters, lung tissue integrity, and alveolar macrophage behavior. METHODS: Forty-eight Wistar rats were randomly assigned to ischemic stroke (Stroke) or sham surgery (Sham). Lung function, histology, and inflammation in the lung, brain, bronchoalveolar lavage fluid (BALF), and circulating plasma were evaluated at 24 h. In vitro, alveolar macrophages from naïve rats (unstimulated) were exposed to serum or BALF from Sham or Stroke animals to elucidate possible mechanisms underlying alterations in alveolar macrophage phagocytic capability. Alveolar macrophages and epithelial and endothelial cells of Sham and Stroke animals were also isolated for evaluation of mRNA expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. RESULTS: Twenty-four hours following ischemic stroke, the tidal volume, expiratory time, and mean inspiratory flow were increased. Compared to Sham animals, the respiratory rate and duty cycle during spontaneous breathing were reduced, but this did not affect lung mechanics during mechanical ventilation. Lungs from Stroke animals showed clear evidence of increased diffuse alveolar damage, pulmonary edema, and inflammation markers. This was associated with an increase in ultrastructural damage, as evidenced by injury to type 2 pneumocytes and endothelial cells, cellular infiltration, and enlarged basement membrane thickness. Protein levels of proinflammatory mediators were documented in the lung, brain, and plasma (TNF-α and IL-6) and in BALF (TNF-α). The phagocytic ability of macrophages was significantly reduced. Unstimulated macrophages isolated from naïve rats only upregulated expression of TNF-α and IL-6 following exposure to serum from Stroke rats. Exposure to BALF from Stroke or Sham animals did not change alveolar macrophage behavior, or gene expression of TNF-α and IL-6. IL-6 expression was increased in macrophages and endothelial cells from Stroke animals. CONCLUSIONS: In rats, focal ischemic stroke is associated with brain-lung crosstalk, leading to increased pulmonary damage and inflammation, as well as reduced alveolar macrophage phagocytic capability, which seems to be promoted by systemic inflammation.


Assuntos
Lesão Pulmonar/etiologia , Macrófagos Alveolares/patologia , Fagócitos/patologia , Acidente Vascular Cerebral/complicações , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Terapia de Imunossupressão/efeitos adversos , Interleucina-6/análise , Interleucina-6/sangue , Lesão Pulmonar/sangue , Lesão Pulmonar/patologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/veterinária , RNA Mensageiro/análise , RNA Mensageiro/sangue , Ratos , Ratos Wistar/imunologia , Ratos Wistar/metabolismo , Estatísticas não Paramétricas , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/fisiopatologia , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue
14.
Front Physiol ; 8: 1071, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326605

RESUMO

In experimental elastase-induced emphysema, mechanical ventilation with variable tidal volumes (VT) set to 30% coefficient of variation (CV) may result in more homogenous ventilation distribution, but might also impair right heart function. We hypothesized that a different CV setting could improve both lung and cardiovascular function. Therefore, we investigated the effects of different levels of VT variability on cardiorespiratory function, lung histology, and gene expression of biomarkers associated with inflammation, fibrogenesis, epithelial cell damage, and mechanical cell stress in this emphysema model. Wistar rats (n = 35) received repeated intratracheal instillation of porcine pancreatic elastase to induce emphysema. Seven animals were not ventilated and served as controls (NV). Twenty-eight animals were anesthetized and assigned to mechanical ventilation with a VT CV of 0% (BASELINE). After data collection, animals (n = 7/group) were randomly allocated to VT CVs of 0% (VV0); 15% (VV15); 22.5% (VV22.5); or 30% (VV30). In all groups, mean VT was 6 mL/kg and positive end-expiratory pressure was 3 cmH2O. Respiratory system mechanics and cardiac function (by echocardiography) were assessed continuously for 2 h (END). Lung histology and molecular biology were measured post-mortem. VV22.5 and VV30 decreased respiratory system elastance, while VV15 had no effect. VV0, VV15, and VV22.5, but not VV30, increased pulmonary acceleration time to pulmonary ejection time ratio. VV22.5 decreased the central moment of the mean linear intercept (D2 of Lm) while increasing the homogeneity index (1/ß) compared to NV (77 ± 8 µm vs. 152 ± 45 µm; 0.85 ± 0.06 vs. 0.66 ± 0.13, p < 0.05 for both). Compared to NV, VV30 was associated with higher interleukin-6 expression. Cytokine-induced neutrophil chemoattractant-1 expression was higher in all groups, except VV22.5, compared to NV. IL-1ß expression was lower in VV22.5 and VV30 compared to VV0. IL-10 expression was higher in VV22.5 than NV. Club cell protein 16 expression was higher in VV22.5 than VV0. SP-D expression was higher in VV30 than NV, while SP-C was higher in VV30 and VV22.5 than VV0. In conclusion, VV22.5 improved respiratory system elastance and homogeneity of airspace enlargement, mitigated inflammation and epithelial cell damage, while avoiding impairment of right cardiac function in experimental elastase-induced emphysema.

15.
Respir Res ; 17(1): 158, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27887604

RESUMO

BACKGROUND: Variable ventilation has been shown to improve pulmonary function and reduce lung damage in different models of acute respiratory distress syndrome. Nevertheless, variable ventilation has not been tested during pneumonia. Theoretically, periodic increases in tidal volume (VT) and airway pressures might worsen the impairment of alveolar barrier function usually seen in pneumonia and could increase bacterial translocation into the bloodstream. We investigated the impact of variable ventilation on lung function and histologic damage, as well as markers of lung inflammation, epithelial and endothelial cell damage, and alveolar stress, and bacterial translocation in experimental pneumonia. METHODS: Thirty-two Wistar rats were randomly assigned to receive intratracheal of Pseudomonas aeruginosa (PA) or saline (SAL) (n = 16/group). After 24-h, animals were anesthetized and ventilated for 2 h with either conventional volume-controlled (VCV) or variable volume-controlled ventilation (VV), with mean VT = 6 mL/kg, PEEP = 5cmH2O, and FiO2 = 0.4. During VV, tidal volume varied randomly with a coefficient of variation of 30% and a Gaussian distribution. Additional animals assigned to receive either PA or SAL (n = 8/group) were not ventilated (NV) to serve as controls. RESULTS: In both SAL and PA, VV improved oxygenation and lung elastance compared to VCV. In SAL, VV decreased interleukin (IL)-6 expression compared to VCV (median [interquartile range]: 1.3 [0.3-2.3] vs. 5.3 [3.6-7.0]; p = 0.02) and increased surfactant protein-D expression compared to NV (2.5 [1.9-3.5] vs. 1.2 [0.8-1.2]; p = 0.0005). In PA, compared to VCV, VV reduced perivascular edema (2.5 [2.0-3.75] vs. 6.0 [4.5-6.0]; p < 0.0001), septum neutrophils (2.0 [1.0-4.0] vs. 5.0 [3.3-6.0]; p = 0.0008), necrotizing vasculitis (3.0 [2.0-5.5] vs. 6.0 [6.0-6.0]; p = 0.0003), and ultrastructural lung damage scores (16 [14-17] vs. 24 [14-27], p < 0.0001). Blood colony-forming-unit (CFU) counts were comparable (7 [0-28] vs. 6 [0-26], p = 0.77). Compared to NV, VCV, but not VV, increased expression amphiregulin, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-1 (2.1 [1.6-2.5] vs. 0.9 [0.7-1.2], p = 0.025; 12.3 [7.9-22.0] vs. 0.8 [0.6-1.9], p = 0.006; and 4.4 [2.9-5.6] vs. 0.9 [0.8-1.4], p = 0.003, respectively). Angiopoietin-2 expression was lower in VV compared to NV animals (0.5 [0.3-0.8] vs. 1.3 [1.0-1.5], p = 0.01). CONCLUSION: In this rat model of pneumonia, VV improved pulmonary function and reduced lung damage as compared to VCV, without increasing bacterial translocation.


Assuntos
Translocação Bacteriana , Pulmão/fisiopatologia , Pneumonia Bacteriana/terapia , Infecções por Pseudomonas/terapia , Respiração Artificial/métodos , Algoritmos , Animais , Células Endoteliais/patologia , Células Epiteliais/patologia , Inflamação/patologia , Pulmão/ultraestrutura , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/fisiopatologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/fisiopatologia , Alvéolos Pulmonares/patologia , Ratos , Ratos Wistar , Testes de Função Respiratória , Volume de Ventilação Pulmonar
16.
Front Physiol ; 7: 457, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774071

RESUMO

Many experimental models have been proposed to study the pathophysiological features of emphysema, as well as to search for new therapeutic approaches for acute or chronically injured lung parenchyma. We aimed to characterize an emphysema model induced by multiple instillations of elastase by tracking changes in inflammation, remodeling, and cardiac function after each instillation. Forty-eight C57BL/6 mice were randomly assigned across two groups. Emphysema (ELA) animals received 1, 2, 3, or 4 intratracheal instillations of pancreatic porcine elastase (PPE, 0.2 IU) with a 1-week interval between them. Controls (C) received saline following the same protocol. Before and after implementation of the protocol, animals underwent echocardiographic analysis. After the first instillation of PPE, the percentage of mononuclear cells in the lung parenchyma increased compared to C (p = 0.0001). The second instillation resulted in hyperinflated alveoli, increased mean linear intercept, and reduced elastic fiber content in lung parenchyma compared to C (p = 0.0197). Following the third instillation, neutrophils and collagen fiber content in alveolar septa and airways increased, whereas static lung elastance was reduced compared to C (p = 0.0094). After the fourth instillation, the percentage of M1 macrophages in lungs; levels of interleukin-1ß (IL-1ß), keratinocyte-derived chemokine, hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF); and collagen fiber content in the pulmonary vessel wall were increased compared to C (p = 0.0096). At this time point, pulmonary arterial hypertension was apparent, with increased diastolic right ventricular wall thickness. In conclusion, the initial phase of emphysema was characterized by lung inflammation with predominance of mononuclear cells, whereas at the late stage, impairment of pulmonary and cardiovascular functions was observed. This model enables analysis of therapies at different time points during controlled progression of emphysema. Accordingly, early interventions could focus on the inflammatory process, while late interventions should focus on restoring cardiorespiratory function.

17.
Front Physiol ; 7: 329, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536247

RESUMO

AIM: We investigated the therapeutic effects of aerobic training on lung mechanics, inflammation, morphometry and biological markers associated with inflammation, and endothelial cell damage, as well as cardiac function in a model of elastase-induced emphysema. METHODS: Eighty-four BALB/c mice were randomly allocated to receive saline (control, C) or 0.1 IU porcine pancreatic elastase (emphysema, ELA) intratracheally once weekly for 4 weeks. After the end of administration period, once cardiorespiratory impairment associated with emphysema was confirmed, each group was further randomized into sedentary (S) and trained (T) subgroups. Trained mice ran on a motorized treadmill, at moderate intensity, 30 min/day, 3 times/week for 4 weeks. RESULTS: Four weeks after the first instillation, ELA animals, compared to C, showed: (1) reduced static lung elastance (Est,L) and levels of vascular endothelial growth factor (VEGF) in lung tissue, (2) increased elastic and collagen fiber content, dynamic elastance (E, in vitro), alveolar hyperinflation, and levels of interleukin-1ß and tumor necrosis factor (TNF)-α, and (3) increased right ventricular diastolic area (RVA). Four weeks after aerobic training, ELA-T group, compared to ELA-S, was associated with reduced lung hyperinflation, elastic and collagen fiber content, TNF-α levels, and RVA, as well as increased Est,L, E, and levels of VEGF. CONCLUSION: Four weeks of regular and moderate intensity aerobic training modulated lung inflammation and remodeling, thus improving pulmonary function, and reduced RVA and pulmonary arterial hypertension in this animal model of elastase-induced emphysema.

18.
PLoS Negl Trop Dis ; 9(8): e0003945, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26248209

RESUMO

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. METHODOLOGY/PRINCIPAL FINDINGS: ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.


Assuntos
Tecido Adiposo/citologia , Cardiomiopatias/prevenção & controle , Doença de Chagas/complicações , Células-Tronco Mesenquimais/imunologia , Miocárdio/imunologia , Trypanosoma cruzi/imunologia , Tecido Adiposo/imunologia , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/imunologia , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Feminino , Coração/parasitologia , Imunidade , Interleucina-10/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma cruzi/fisiologia
20.
Respir Res ; 15: 118, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25272959

RESUMO

We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1×105), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-ß levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.


Assuntos
Células da Medula Óssea/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Enfisema Pulmonar/patologia , Enfisema Pulmonar/terapia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA