Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38716851

RESUMO

We studied the origin of the vibrational signatures in the sum-frequency generation (SFG) spectrum of fibrillar collagen type I in the carbon-hydrogen stretching regime. For this purpose, we developed an all-reflective, laser-scanning SFG microscope with minimum chromatic aberrations and excellent retention of the polarization state of the incident beams. We performed detailed SFG measurements of aligned collagen fibers obtained from rat tail tendon, enabling the characterization of the magnitude and polarization-orientation dependence of individual tensor elements Xijk2 of collagen's nonlinear susceptibility. Using the three-dimensional atomic positions derived from published crystallographic data of collagen type I, we simulated its Xijk2 elements for the methylene stretching vibration and compared the predicted response with the experimental results. Our analysis revealed that the carbon-hydrogen stretching range of the SFG spectrum is dominated by symmetric stretching modes of methylene bridge groups on the pyrrolidine rings of the proline and hydroxyproline residues, giving rise to a dominant peak near 2942 cm-1 and a shoulder at 2917 cm-1. Weak asymmetric stretches of the methylene bridge group of glycine are observed in the region near 2870 cm-1, whereas asymmetric CH2-stretching modes on the pyrrolidine rings are found in the 2980 to 3030 cm-1 range. These findings help predict the protein's nonlinear optical properties from its crystal structure, thus establishing a connection between the protein structure and SFG spectroscopic measurements.


Assuntos
Carbono , Colágeno Tipo I , Hidrogênio , Hidrogênio/química , Carbono/química , Colágeno Tipo I/química , Ratos , Animais , Análise Espectral/métodos
2.
Micromachines (Basel) ; 14(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38004954

RESUMO

We present a combination of light-sheet excitation and two-dimensional fluorescence intensity ratio (FIR) measurements as a simple and promising technique for three-dimensional temperature mapping. The feasibility of this approach is demonstrated with samples fabricated with sodium yttrium fluoride nanoparticles co-doped with rare-earth ytterbium and erbium ions (NaYF4:Yb3+/Er3+) incorporated into polydimethylsiloxane (PDMS) as a host material. In addition, we also evaluate the technique using lipid-coated NaYF4:Yb3+/Er3+ nanoparticles immersed in agar. The composite materials show upconverted (UC) fluorescence bands when excited by a 980 nm near-infrared laser light-sheet. Using a single CMOS camera and a pair of interferometric optical filters to specifically image the two thermally-coupled bands (at 525 and 550 nm), the two-dimensional FIR and, hence, the temperature map can be readily obtained. The proposed method can take optically sectioned (confocal-like) images with good optical resolution over relatively large samples (up to the millimetric scale) for further 3D temperature reconstruction.

3.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140339

RESUMO

We present a Silicon-based Charge-Coupled Device (Si-CCD) sensor applied as a cost-effective spectrometer for femtosecond pulse characterization in the Near Infrared region in two different configurations: two-Fourier and Czerny-Turner setups. To test the spectrometer's performance, a femtosecond Optical Parametric Oscillator with a tuning range between 1100 and 1700 nm and a femtosecond Erbium-Doped Fiber Amplifier at 1582 nm were employed. The nonlinear spectrometer operation is based on the Two-Photon Absorption effect generated in the Si-CCD sensor. The achieved spectrometer resolution was 0.6 ± 0.1 nm with a threshold peak intensity of 2×106Wcm2. An analysis of the nonlinear response as a function of the wavelength, the response saturation, and the criteria to prevent it are also presented.

4.
J Biophotonics ; 15(6): e202100359, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184408

RESUMO

Light-sheet fluorescence microscopy (LSFM) is useful for developmental biology studies, which require a simultaneous visualization of dynamic microstructures over large fields of views (FOVs). A comparative study between multicolor Bessel and Gaussian-based LSFM systems is presented. Discussing the chromatic implications to achieve colocalized and large FOVs when both optical arrays are implemented under the same excitation objective is the purpose of this work. The light-sheets FOVs, optical sectioning, and resolution are experimentally characterized and discussed. The advantages of using Bessel beams and the main drawbacks of using Gaussian beams for multicolor imaging are highlighted. Multiple Bessel excitation minimizes the FOV's mismatch's effects due to the beams chromatic defocusing and alleviates the aside object blurring obtained with multiple Gaussian beams. It also offers a fair homogeneous axial resolution and optical sectioning over a larger effective FOV. Imaging over perithecia samples of the fungus Sordaria macrospora demonstrates such advantages. This work complements previous comparative studies that discuss only single wavelengths light-sheets excitations.


Assuntos
Técnicas Histológicas , Microscopia de Fluorescência/métodos , Distribuição Normal
5.
Cells ; 10(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201497

RESUMO

Cortical dysplasias are alterations in the organization of the layers of the brain cortex due to problems in neuronal migration during development. The neuronal component has been widely studied in experimental models of cortical dysplasias. In contrast, little is known about how glia are affected. In the cerebellum, Bergmann glia (BG) are essential for neuronal migration during development, and in adult they mediate the control of fine movements through glutamatergic transmission. The aim of this study was to characterize the morphology and intracellular calcium dynamics of BG and astrocytes from mouse cerebellum and their modifications in a model of cortical dysplasia induced by carmustine (BCNU). Carmustine-treated mice were affected in their motor coordination and balance. Cerebellar dysplasias and heterotopias were more frequently found in lobule X. Morphology of BG cells and astrocytes was affected, as were their spontaneous [Ca2+]i transients in slice preparation and in vitro.


Assuntos
Sinalização do Cálcio , Cerebelo/patologia , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Animais , Astrócitos/patologia , Carmustina , Células Cultivadas , Malformações do Desenvolvimento Cortical/induzido quimicamente , Camundongos Transgênicos , Atividade Motora
6.
Biomed Opt Express ; 10(12): 6449-6461, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853410

RESUMO

We present a study of the optical second-order nonlinearity of type I collagen fibers grown in vitro via second harmonic generation (SHG) experiments and analyze the observed polarization-resolved SHG signal using previously reported SHG analytical expressions obtained for anisotropic tissue. Our results indicate that the effective second-order nonlinearity measured in the grown fibers is one order of magnitude lower than that of native collagen fibers. This is attributed to the formation of loose and dispersive fibrillar networks of thinner collagen fibrils that constitute the reassembled collagen fibers. This is confirmed by scanning electronic microscopy (SEM) imaging and the polarization dependence of the SHG signal. The measured values of the anisotropy parameter ρ of the reassembled collagen fibers are found to be similar to that obtained for native fibers on the relevant sub-µm scale.

7.
J Biomed Opt ; 24(1): 1-8, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30612379

RESUMO

We present a multicolor fluorescence microscope system, under a selective plane illumination microscopy (SPIM) configuration, using three continuous wave-lasers and a single-channel-detection camera. The laser intensities are modulated with three time-delayed pulse trains that operate synchronously at one third of the camera frame rate, allowing a sequential excitation and an image acquisition of up to three different biomarkers. The feasibility of this imaging acquisition mode is demonstrated by acquiring single-plane multicolor images of living hyphae of Neurospora crassa. This allows visualizing simultaneously the localization and dynamics of different cellular components involved in apical growth in living hyphae. The configuration presented represents a noncommercial, cost-effective alternative microscopy system for the rapid and simultaneous acquisition of multifluorescent images and can be potentially useful for three-dimensional imaging of large biological samples.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Neurospora crassa/metabolismo , Biomarcadores/metabolismo , Cor , Desenho de Equipamento , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Lasers , Luz , Proteínas Luminescentes/química , Rodaminas/química , Proteína Vermelha Fluorescente
8.
J Biophotonics ; 11(6): e201700301, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316331

RESUMO

Light sheet optical microscopy on strontium aluminate nanoparticles (SrAl2 O4 NPs)1 codoped with Eu2+ and Dy3+ was used for cancer cell tagging and tracking. The nanoparticles were synthesized by urea-assisted combustion with optimized percentage values of the 2 codoping rare-earth ions for cell viability and for lower cytotoxic effects. The optical properties of these materials showed an excitation wide range of wavelengths (λexc = 254-460 nm), a broad emission band (λem = 475-575 nm) with the maximum centered wavelength at 525 nm and a half lifetime within the seconds regime. The feasibility to measure the nanoparticle luminescence under the selective plane illumination configuration was studied by immersing the nanoparticles in 1% Agarose. The potential applicability of the synthesized nanophosphors for cancer cell tagging was demonstrated by using in vitro experiments with human breast adenocarcinoma MCF-7 cells. A single MCF-7 cell observed by the use of light sheet microscopy with UV excitation. The cell has been bio-labeled with FA-SrAl2 04 : Eu2+ , Dy3+ NPs and 4',6-diamidino-2-phenylindole, dihydrochloride for nucleus identification.


Assuntos
Alumínio/química , Disprósio/química , Európio/química , Luz , Microscopia/métodos , Nanopartículas/química , Estrôncio/química , Humanos , Imageamento Tridimensional , Células MCF-7
9.
Biomed Opt Express ; 6(9): 3449-61, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26417514

RESUMO

We perform rapid spontaneous Raman 2D imaging in light-sheet microscopy using continuous wave lasers and interferometric tunable filters. By angularly tuning the filter, the cut-on/off edge transitions are scanned along the excited Stokes wavelengths. This allows obtaining cumulative intensity profiles of the scanned vibrational bands, which are recorded on image stacks; resembling a spectral version of the knife-edge technique to measure intensity profiles. A further differentiation of the stack retrieves the Raman spectra at each pixel of the image which inherits the 3D resolution of the host light sheet system. We demonstrate this technique using solvent solutions and composites of polystyrene beads and lipid droplets immersed in agar and by imaging the C-H (2800-3100cm(-1)) region in a C. elegans worm. The image acquisition time results in 4 orders of magnitude faster than confocal point scanning Raman systems, allowing the possibility of performing fast spontaneous Raman·3D-imaging on biological samples.

10.
Biomed Opt Express ; 3(7): 1492-505, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22808423

RESUMO

We present the implementation of a combined digital scanned light-sheet microscope (DSLM) able to work in the linear and nonlinear regimes under either Gaussian or Bessel beam excitation schemes. A complete characterization of the setup is performed and a comparison of the performance of each DSLM imaging modality is presented using in vivoCaenorhabditis elegans samples. We found that the use of Bessel beam nonlinear excitation results in better image contrast over a wider field of view.

11.
Opt Express ; 19(22): 21575-87, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22109006

RESUMO

We present second-harmonic generation (SHG) measurements and simulations from a silica matrix containing randomly distributed but aligned elongated silver nanoparticles (NPs). The composites were produced by a double ion-implantation process of silver nanoparticles followed by an irradiation with Si ions. It is demonstrated that one can model the experimental results by considering the sub-micrometric composite layer as a nonlinear media containing rod NPs for which the hyperpolarizability tensor is cylindrically symmetric along the NP long axis. The second-order macroscopic susceptibility of the composite originates from the coherent summation of the hyperpolarizabilities associated to each NP. We obtain analytical expressions for the p- and s-polarized effective susceptibility tensor as a function of experimental variables, such as the fundamental beam input polarization and sample orientation, and fitting parameters relating the cylindrically shaped hyperpolarizability. In addition, coherent SHG measurements on spherical nanoparticles resulting from the first ion-implantation process are also presented showing an isotropic polar behavior for the total SHG intensity where the p-polarized SHG intensity resulted to be the main contribution.

12.
Opt Lett ; 34(15): 2258-60, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19649063

RESUMO

We demonstrate a technique for differential coherent anti-Stokes Raman scattering (CARS) microscopy employing linearly chirped femtosecond laser pulses. By replicating the exciting pump-Stokes pulse pairs to create a pulse train at twice the laser repetition rate, and controlling the instantaneous frequency difference of each pair by glass dispersion, we can adjust the Raman frequency probed by each pair in an intrinsically stable and cost-effective way. The resulting CARS intensities are detected by a single photomultiplier as sum and difference using phase-sensitive frequency filtering. We demonstrate imaging of polymer beads and living cells with suppressed nonresonant CARS background and improved chemical sensitivity.


Assuntos
Aumento da Imagem/instrumentação , Lasers , Microscopia/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Análise Espectral Raman/instrumentação , Tomografia de Coerência Óptica/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Biophys J ; 93(12): 4433-44, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17766339

RESUMO

The molecular origins of second-order nonlinear effects in type I collagen fibrils have been identified with sum-frequency generation vibrational spectroscopy. The dominant contributing molecular groups are: 1), the methylene groups associated with a Fermi resonance between the fundamental symmetric stretch and the bending overtone of methylene; and 2), the carbonyl and peptide groups associated with the amide I band. The noncentrosymmetrically aligned methylene groups are characterized by a distinctive tilt relative to the axis perpendicular to the main axis of the collagen fiber, a conformation producing a strong achiral contribution to the second-order nonlinear effect. In contrast, the stretching vibration of the carbonyl groups associated with the amide I band results in a strong chiral contribution to the optical second-order nonlinear effect. The length scale of these chiral effects ranges from the molecular to the supramolecular.


Assuntos
Colágeno/química , Colágeno/ultraestrutura , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Dinâmica não Linear , Óptica e Fotônica , Conformação Proteica , Refratometria/métodos , Vibração
14.
J Biomed Opt ; 12(6): 064019, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18163835

RESUMO

A novel signal processing algorithm for quantifying structural disorder in biological tissue using second harmonic generation (SHG) imaging is described. Both the magnitude and the pattern of disorder in collagenous tissues can be determined with this method. Mathematical models are used to determine the range of disordered states over which the algorithm can be used, because highly disordered biological samples do not generate second harmonic signals. The method is validated by measuring disorder in heated fascicles using SHG and showing that results are significantly correlated with morphometric determination. Applicability of the method to tissue pathology is demonstrated by analysis of a mouse model of intervertebral disk injury. Disks were subjected to tensile or compressive forces in vivo for one week. Structural disorder in the annulus fibrosus was measured by SHG scanning and by standard morphometric analysis. Values for disorder obtained by SHG scanning were significantly correlated with values obtained by morphometry (p<0.001). Quantitation of disorder using SHG offers significant advantages over morphometric determination. Data obtained in this study suggest that this method can be used to discriminate between reversible and irreversible tissue damage.


Assuntos
Disco Intervertebral/patologia , Óptica e Fotônica , Algoritmos , Animais , Colágeno/metabolismo , Temperatura Alta/efeitos adversos , Processamento de Imagem Assistida por Computador , Disco Intervertebral/lesões , Disco Intervertebral/metabolismo , Matemática , Camundongos , Dinâmica não Linear , Fotomicrografia , Ratos , Processamento de Sinais Assistido por Computador , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Tendões/metabolismo , Tendões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA