Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731842

RESUMO

(1) Autophagy plays a significant role in development and cell proliferation. This process is mainly accomplished by the LC3 protein, which, after maturation, builds the nascent autophagosomes. The inhibition of LC3 maturation results in the interference of autophagy activation. (2) In this study, starting from the structure of a known LC3B binder (LIR2-RavZ peptide), we identified new LC3B ligands by applying an in silico drug design strategy. The most promising peptides were synthesized, biophysically assayed, and biologically evaluated to ascertain their potential antiproliferative activity on five humans cell lines. (3) A cyclic peptide (named Pep6), endowed with high conformational stability (due to the presence of a disulfide bridge), displayed a Kd value on LC3B in the nanomolar range. Assays accomplished on PC3, MCF-7, and A549 cancer cell lines proved that Pep6 exhibited cytotoxic effects comparable to those of the peptide LIR2-RavZ, a reference LC3B ligand. Furthermore, it was ineffective on both normal prostatic epithelium PNT2 and autophagy-defective prostate cancer DU145 cells. (4) Pep6 can be considered a new autophagy inhibitor that can be employed as a pharmacological tool or even as a template for the rational design of new small molecules endowed with autophagy inhibitory activity.


Assuntos
Autofagia , Desenho de Fármacos , Peptídeos Cíclicos , Humanos , Autofagia/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Células A549 , Células MCF-7
2.
Pharmaceutics ; 16(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675167

RESUMO

Oral colon delivery systems based on a dual targeting strategy, harnessing time- and microbiota-dependent release mechanisms, were designed in the form of a drug-containing core, a swellable/biodegradable polysaccharide inner layer and a gastroresistant outer film. High-methoxyl pectin was employed as the functional coating polymer and was applied by spray-coating or powder-layering. Stratification of pectin powder required the use of low-viscosity hydroxypropyl methylcellulose in water solution as the binder. These coatings exhibited rough surfaces and higher thicknesses than the spray-coated ones. Using a finer powder fraction improved the process outcome, coating quality and inherent barrier properties in aqueous fluids. Pulsatile release profiles and reproducible lag phases of the pursued duration were obtained from systems manufactured by both techniques. This performance was confirmed by double-coated systems, provided with a Kollicoat® MAE outer film that yielded resistance in the acidic stage of the test. Moreover, HM pectin-based coatings manufactured by powder-layering, tested in the presence of bacteria from a Crohn's disease patient, showed earlier release, supporting the role of microbial degradation as a triggering mechanism at the target site. The overall results highlighted viable coating options and in vitro release characteristics, sparking new interest in naturally occurring pectin as a coating agent for oral colon delivery.

3.
Planta Med ; 90(1): 73-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37963569

RESUMO

Cannabis as a therapeutic agent is increasing in popularity all around the globe, particularly in Western countries, and its potential is now well assessed. On the other hand, each country has its own regulation for the preparation of cannabis macerated oils; in Italy, there are only a few preparation methods allowed. With this work, we aim to perform a stability study of cannabis oils produced with a novel method for the extraction of cannabinoids from cannabis inflorescence. Three different varieties of cannabis were used, with and without the adding of tocopherol acetate as an antioxidant. Cannabinoids were extracted using ethanol at room temperature; then, the solvent was evaporated under reduced pressure and the preparations reconstituted with olive oil. In this work, we assessed the stability of both cannabinoids and terpenes in these formulas over 8 months. Cannabinoid stability was assessed by monitoring the concentrations of THC and CBD, while terpene stability was assessed by monitoring ß-Caryophyllene and α-Humulene concentrations. Stability of the extracts was not influenced by the presence of tocopherol acetate, though refrigeration seems to be detrimental for a long storage of products, especially regarding THC concentrations. The improvements offered by this method reside in the flexibility in controlling the concentration of the extract and the ability to produce highly concentrated oils, alongside the possibility to produce standardized oils despite the variability of the starting plant material.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Maconha Medicinal , Maconha Medicinal/uso terapêutico , Etanol , alfa-Tocoferol , Extratos Vegetais , Azeite de Oliva , Terpenos
4.
Antioxidants (Basel) ; 12(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37627607

RESUMO

Biofilm-dwelling cells endure adverse conditions, including oxidative imbalances. The NADH:quinone oxidoreductase enzyme WrbA has a crucial role in the mechanism of action of antibiofilm molecules such as ellagic and salicylic acids. This study aimed to exploit the potential of the WrbA scaffold as a valuable target for identifying antibiofilm compounds at non-lethal concentrations. A three-dimensional computational model, based on the published WrbA structure, was used to screen natural compounds from a virtual library of 800,000 compounds. Fisetin, morin, purpurogallin, NZ028, and NZ034, along with the reference compound ellagic acid, were selected. The antibiofilm effect of the molecules was tested at non-lethal concentrations evaluating the cell-adhesion of wild-type and WrbA-deprived Escherichia coli strains through fluorochrome-based microplate assays. It was shown that, except for NZ028, all of the selected molecules exhibited notable antibiofilm effects. Purpurogallin and NZ034 showed excellent antibiofilm performances at the lowest concentration of 0.5 µM, in line with ellagic acid. The observed loss of activity and the level of reactive oxygen species in the mutant strain, along with the correlation with terms contributing to the ligand-binding free energy on WrbA, strongly indicates the WrbA-dependency of purpurogallin and NZ034. Overall, the molecular target WrbA was successfully employed to identify active compounds at non-lethal concentrations, thus revealing, for the first time, the antibiofilm efficacy of purpurogallin and NZ034.

5.
Foods ; 12(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628015

RESUMO

In recent years, there has been growing interest in exploring alternative and innovative delivery systems to improve the efficacy of iron supplements, satisfying iron needs and lowering side effects. To address this issue, this study aimed at demonstrating the advantages of Ferro Supremo formulation (composed of encapsulated iron, vitamins, and micronutrients), in terms of capacity to improve iron intestinal absorption, in comparison with standard FeSO4. Hence, differentiated Caco-2 cells have been used for assessing the in vitro bioavailability and safety of FS and FeSO4. MTT experiments demonstrated that both FS and FeSO4 are not able to impair the viability of Caco-2 cells. Furthermore, the quantitative and qualitative analysis, conducted by atomic absorption spectrometry and fluorescence determinations, revealed that FS can enter, accumulate in the cytoplasm, and be transported by intestinal cells four times more efficiently than FeSO4. Our findings indicate that this formulation can be considered a valuable and efficiently good choice as food supplements for improving iron deficiency.

6.
Clin Chem Lab Med ; 61(11): 1978-1993, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37302088

RESUMO

The use of alternative matrices in toxicological analyses has been on the rise in clinical and forensic settings. Oral fluid (OF), as non-invasive fluid, has attracted attention in the field of drug screening, both for therapeutic and forensic purposes, as well as for medical diagnosis, clinical management, on-site (real time) doping and for monitoring environmental exposure to toxic substances. A good correlation between OF and blood is now established for drug concentrations. Therefore, OF might be a potential substitute of blood, especially for long-term surveillance (e.g., therapeutic drugs) or to screen a large number of patients, as well as for the development of salivary point-of-care technologies. In this review, we aimed to summarize and critically evaluate the current literature that focused on the comparison of drugs detection in OF and blood specimens.


Assuntos
Saliva , Detecção do Abuso de Substâncias , Humanos , Medicina Legal
7.
Pharmaceutics ; 15(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376205

RESUMO

Bacterial biofilm is a major contributor to the persistence of infection and the limited efficacy of antibiotics. Antibiofilm molecules that interfere with the biofilm lifestyle offer a valuable tool in fighting bacterial pathogens. Ellagic acid (EA) is a natural polyphenol that has shown attractive antibiofilm properties. However, its precise antibiofilm mode of action remains unknown. Experimental evidence links the NADH:quinone oxidoreductase enzyme WrbA to biofilm formation, stress response, and pathogen virulence. Moreover, WrbA has demonstrated interactions with antibiofilm molecules, suggesting its role in redox and biofilm modulation. This work aims to provide mechanistic insights into the antibiofilm mode of action of EA utilizing computational studies, biophysical measurements, enzyme inhibition studies on WrbA, and biofilm and reactive oxygen species assays exploiting a WrbA-deprived mutant strain of Escherichia coli. Our research efforts led us to propose that the antibiofilm mode of action of EA stems from its ability to perturb the bacterial redox homeostasis driven by WrbA. These findings shed new light on the antibiofilm properties of EA and could lead to the development of more effective treatments for biofilm-related infections.

8.
J Med Chem ; 66(12): 7943-7958, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37261954

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9) is responsible for the degradation of the hepatic low-density lipoprotein receptor (LDLR), which regulates circulating cholesterol levels. Consequently, the PCSK9 inhibition is a valuable therapeutic approach for the treatment of hypercholesterolemia and cardiovascular diseases. In our studies, we discovered Rim13, a polyimidazole derivative reducing the protein-protein interaction between PCSK9 and LDLR with an IC50 of 1.6 µM. The computational design led to the optimization of the shape of the PCSK9/ligand complementarity, enabling the discovery of potent diimidazole derivatives. In fact, carrying out biological assays to fully characterize the cholesterol-lowering activity of the new analogues and using both biochemical and cellular techniques, compound Dim16 displayed improved PCSK9 inhibitory activity (IC50 0.9 nM). Interestingly, similar to other lupin-derived peptides and their synthetic analogues, some compounds in this series showed dual hypocholesterolemic activity since some of them complementarily inhibited the 3-hydroxy-3-methylglutaryl coenzyme A reductase.


Assuntos
Pró-Proteína Convertase 9 , Subtilisina , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/metabolismo , Receptores de LDL/metabolismo , Colesterol
9.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985837

RESUMO

Boron containing compounds (BCCs) aroused increasing interest in the scientific community due to their wide application as drugs in various fields. In order to design new compounds hopefully endowed with pharmacological activity and also investigate their conformational behavior, the support of computational studies is crucial. Nevertheless, the suitable molecular mechanics parameterization and the force fields needed to perform these simulations are not completely available for this class of molecules. In this paper, Amber force field parameters for phenyl-, benzyl-, benzylamino-, and methylamino-boronates, a group of boron-containing compounds involved in different branches of the medicinal chemistry, were created. The robustness of the obtained data was confirmed through molecular dynamics simulations on ligand/ß-lactamases covalent complexes. The ligand torsional angles, populated over the trajectory frames, were confirmed by values found in the ligand geometries, located through optimizations at the DFT/B3LYP/6-31g(d) level, using water as a solvent. In summary, this study successfully provided a library of parameters, opening the possibility to perform molecular dynamics simulations of this class of boron-containing compounds.

10.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903597

RESUMO

The COVID-19 pandemic has given a strong impetus to the search for antivirals active on SARS-associated coronaviruses. Over these years, numerous vaccines have been developed and many of these are effective and clinically available. Similarly, small molecules and monoclonal antibodies have also been approved by the FDA and EMA for the treatment of SARS-CoV-2 infection in patients who could develop the severe form of COVID-19. Among the available therapeutic tools, the small molecule nirmatrelvir was approved in 2021. It is a drug capable of binding to the Mpro protease, an enzyme encoded by the viral genome and essential for viral intracellular replication. In this work, by virtual screening of a focused library of ß-amido boronic acids, we have designed and synthesized a focused library of compounds. All of them were biophysically tested by microscale thermophoresis, attaining encouraging results. Moreover, they also displayed Mpro protease inhibitory activity, as demonstrated by performing enzymatic assays. We are confident that this study will pave the way for the design of new drugs potentially useful for the treatment of SARS-CoV-2 viral infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Inibidores de Proteases/química , Antivirais/farmacologia , Simulação de Acoplamento Molecular
11.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838621

RESUMO

The management of food and food-related wastes represents a growing global issue, as they are hard to recycle and dispose of. Foremost, waste can serve as an important source of biomasses. Particularly, fat-enriched biomasses are receiving more and more attention for their role in the manufacturing of biofuels. Nonetheless, many biomasses have been set aside over the years. Wool wax, also known as lanolin, has a huge potential for becoming a source of typical and atypical fatty acids. The main aim of this work was to evaluate and assess a protocol for the fractioning of fatty acids from lanolin, a natural by-product of the shearing of sheep, alongside the design of a new and rapid quantitative GC-MS method for the derivatization of free fatty acids in fat mixtures, using MethElute™. As the acid portion of lanolin is characterized by the presence of both aliphatic and hydroxylated fatty acids, we also evaluated a procedure for the parting of these two species, by using NMR spectroscopy, benefitting of the different solubilities of the components in organic solvents. At last, we evaluated and quantified the fatty acids and the α-hydroxy fatty acids present in each attained portion, employing both analytical and synthetic standards. The performed analyses, both qualitative and quantitative, showed a good performance in the parting of the different acid components, and GC-MS allowed to speculate that the majority of α-hydroxylated fatty acids is formed of linear saturated carbon chains, while the totality of properly said fatty acids has a much more complex profile.


Assuntos
Ácidos Graxos , Lanolina , Animais , Ovinos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lanolina/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Ácidos Carboxílicos
12.
Glycobiology ; 33(2): 88-94, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36504340

RESUMO

Glucosylceramide synthase (UGCG) is a key enzyme in the biosynthesis of glycosphingolipids and its activity is related to the resistance to anticancer drugs and is involved in the derangement of metabolism in various diseases. Moreover, UGCG acts as a major controller of the balanced levels of individual brain sphingolipids that may trigger neurodegeneration in Gaucher disease and in Parkinson disease associated to pathogenic variants in the glucocerebrosidase-encoding gene GBA. We have developed an effective method for determining UGCG activity in vitro using deuterated ceramide as an acceptor, and quantitation of the formed deuterated glucosylceramide by liquid chromatography coupled with tandem mass spectrometry. The method enabled us to determine the kinetic parameters of UGGC and the effect of the inhibitor GZ667161 on the enzyme activity expressed in model cells, as well as to measure UGCG specific activity in human fibroblasts using a simple crude cell homogenate. This novel approach may be useful in determining the actual UGCG activity levels in patient cells and tissues of animal models of diseases, and to study novel drugs targeting glycosphingolipid metabolism.


Assuntos
Encéfalo , Glucosilceramidas , Animais , Humanos , Glucose , Glucosiltransferases/genética , Difosfato de Uridina
13.
Pharmaceutics ; 14(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36559212

RESUMO

Over the past 20 years, the interest in Cannabis oily extracts for medicinal use compounded in pharmacy has consistently grown, along with the need to have preparations of adequate quality. Hot maceration (M) is the most frequently used method to compound oily solutions. In this work, we systematically studied the possibility of using an ultrasonic homogenizer and a sonotrode (US) as an alternative extraction method. Oily solutions were prepared using two available varieties of Cannabis for medicinal use, called FM2 and Bedrocan. All preparations resulted with an equivalent content in CBD and THC, with the advantage of a faster process using US. In particular, 10 min sonication at the amplitude optimized for the sonotrode used (2 or 7 mm) provides not statistically different total Δ9-tetrahydrocannabinol (M-FM2: 0.26 ± 0.02 % w/w; US-FM2: 0.19 ± 0.004 % w/w; M-Bedrocan: 1.83 ± 0.17 % w/w; US-Bedrocan: 1.98 ± 0.01 % w/w) and total cannabidiol (M-FM2: 0.59 ± 0.04 % w/w; US-FM2: 0.58 ± 0.01 % w/w) amounts extracted in refined olive oil. It can therefore be confirmed that sonotrode is an efficient and fast extraction technique and its use is without negative consequence on the solvent properties. Despite DSC evidencing that both maceration and sonication modify the Tonset and enthalpy of the event at about -10 °C, the qualitative characteristics of the oil remained constant for the two treatments and similar to the starting material.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36445181

RESUMO

Introduction: Hexahydrocannabinols (HHCs), referred to as (9R)-HHC and (9S)-HHC diastereoisomers, are poorly studied cannabinoids naturally found in small concentrations in the pollen and the seeds of the hemp plants. Aim: In this study, for the first time, we describe the finding of (9R)-HHC and (9S)-HHC in two commercialized hemp derived products. Methods: The achievement of reference standards by semisynthetic or isolation approach allows us to develop and validate a gas chromatography mass spectrometry method for the identification and quantification of HHCs in hemp-derived resin. Results: The two analyzed samples showed percentage of 42.5 and 41.5 for (9R)-HHC and of 23.6 and 23.6 for (9S)-HHC. Conclusions: Despite the lack of in-depth studies about HHCs activity, potency, toxicity, and safety, these cannabinoids are emerging on the light-cannabis (hemp) market probably because legislations still do not clearly regulate them. Since analytical assay for hemp-derived products usually include only Δ9-THC, THC-A, CBD, and CBD-A, a thorough investigation could be carried out to reveal the possible addition of "new" compounds that might be a matter of safety.

15.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36145323

RESUMO

The therapeutic use of Cannabis oil extracts is constantly increasing. However, in Italy, they are allowed to be prepared with only a few methods and matrices. With this work, we aimed to assess how the different processes might affect the chemical composition of two different matrices (olive oils and medium chain triglycerides oils - MCT), accounting as variables for both the presence of Cannabis dried apices of the female flower and the adding of tocopherol acetate as an antioxidant. The macerated oils were prepared with four of the methods allowed according to the Italian legislation (Romano-Hazekamp, Cannazza-Citti, SIFAP and Calvi) and analyzed for normal and oxidized tocopherols, oxidized and conjugated fatty acids and volatile carbonyl compounds (VCCs), all using liquid chromatography coupled to UV or PDA detectors. According to our results, neither normal nor oxidized tocopherols are affected by the addition of antioxidants or Cannabis, while the oxidation state (according to the levels of oxidized and conjugated fatty acids) is often altered in either case. The VCCs concentrations, on the other hand, are never notably altered. These results suggest a worthless use of antioxidants in Cannabis macerated oils preparations, while the dried apices of female flowers might have a protective role in maintaining the oil oxidation state.

16.
Metabolites ; 12(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35629954

RESUMO

The main concerns in targeted "sphingolipidomics" are the extraction and proper handling of biological samples to avoid interferences and achieve a quantitative yield well representing all the sphingolipids in the matrix. Our work aimed to compare different pre-analytical procedures and to evaluate a derivatization step for sphingoid bases quantification, to avoid interferences and improve sensitivity. We tested four protocols for the extraction of sphingolipids from human plasma, at different temperatures and durations, and two derivatization procedures for the conversion of sphingoid bases into phenylthiourea derivatives. Different columns and LC-MS/MS chromatographic conditions were also tested. The protocol that worked better for sphingolipids analysis involved a single-phase extraction in methanol/chloroform mixture (2:1, v/v) for 1 h at 38 °C, followed by a 2 h alkaline methanolysis at 38 °C, for the suppression of phospholipids signals. The derivatization of sphingoid bases promotes the sensibility of non-phosphorylated species but we proved that it is not superior to a careful choice of the appropriate column and a full-length elution gradient. Our procedure was eventually validated by analyzing plasma and erythrocyte samples of 20 volunteers. While both extraction and methanolysis are pivotal steps, our final consideration is to analyze sphingolipids and sphingoid bases under different chromatographic conditions, minding the interferences.

17.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563459

RESUMO

(1) Background: Disfunctions in autophagy machinery have been identified in various conditions, including neurodegenerative diseases, cancer, and inflammation. Among mammalian autophagy proteins, the Atg8 family member GABARAP has been shown to be greatly involved in the autophagy process of prostate cancer cells, supporting the idea that GABARAP inhibitors could be valuable tools to fight the progression of tumors. (2) Methods: In this paper, starting from the X-ray crystal structure of GABARAP in a complex with an AnkirinB-LIR domain, we identify two new peptides by applying in silico drug design techniques. The two ligands are synthesized, biophysically assayed, and biologically evaluated to ascertain their potential anticancer profile. (3) Results: Two cyclic peptides (WC8 and WC10) displayed promising biological activity, high conformational stability (due to the presence of disulfide bridges), and Kd values in the low micromolar range. The anticancer assays, performed on PC-3 cells, proved that both peptides exhibit antiproliferative effects comparable to those of peptide K1, a known GABARAP inhibitor. (4) Conclusions: WC8 and WC10 can be considered new GABARAP inhibitors to be employed as pharmacological tools or even templates for the rational design of new small molecules.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Associadas aos Microtúbulos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/química , Peptídeos Cíclicos/farmacologia
20.
Pharmaceutics ; 14(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336039

RESUMO

(1) Background: Proprotein convertase subtilisin/kexin 9 (PCSK9) is responsible for the degradation of the hepatic low-density lipoprotein receptor (LDLR), which regulates the circulating cholesterol level. In this field, we discovered natural peptides derived from lupin that showed PCSK9 inhibitory activity. Among these, the most active peptide, known as P5 (LILPHKSDAD), reduced the protein-protein interaction between PCSK9 and LDLR with an IC50 equals to 1.6 µM and showed a dual hypocholesterolemic activity, since it shows complementary inhibition of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR). (2) Methods: In this study, by a computational approach, the P5 primary structure was optimized to obtain new analogs with improved affinity to PCSK9. Then, biological assays were carried out for fully characterizing the dual cholesterol-lowering activity of the P5 analogs by using both biochemical and cellular techniques. (3) Results: A new peptide, P5-Best (LYLPKHSDRD) displayed improved PCSK9 (IC50 0.7 µM) and HMG-CoAR (IC50 88.9 µM) inhibitory activities. Moreover, in vitro biological assays on cells demonstrated that, not only P5-Best, but all tested peptides maintained the dual PCSK9/HMG-CoAR inhibitory activity and remarkably P5-Best exerted the strongest hypocholesterolemic effect. In fact, in the presence of this peptide, the ability of HepG2 cells to absorb extracellular LDL was improved by up to 254%. (4) Conclusions: the atomistic details of the P5-Best/PCSK9 and P5-Best/HMG-CoAR interactions represent a reliable starting point for the design of new promising molecular entities endowed with hypocholesterolemic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA