Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 50(6): 3190-3202, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35234910

RESUMO

Bovine leukemia virus (BLV)-induced tumoral development is a multifactorial phenomenon that remains incompletely understood. Here, we highlight the critical role of the cellular CCCTC-binding factor (CTCF) both in the regulation of BLV transcriptional activities and in the deregulation of the three-dimensional (3D) chromatin architecture surrounding the BLV integration site. We demonstrated the in vivo recruitment of CTCF to three conserved CTCF binding motifs along the provirus. Next, we showed that CTCF localized to regions of transitions in the histone modifications profile along the BLV genome and that it is implicated in the repression of the 5'Long Terminal Repeat (LTR) promoter activity, thereby contributing to viral latency, while favoring the 3'LTR promoter activity. Finally, we demonstrated that BLV integration deregulated the host cellular 3D chromatin organization through the formation of viral/host chromatin loops. Altogether, our results highlight CTCF as a new critical effector of BLV transcriptional regulation and BLV-induced physiopathology.


Assuntos
Vírus da Leucemia Bovina , Latência Viral , Fator de Ligação a CCCTC/metabolismo , Cromatina , Vírus da Leucemia Bovina/genética , Vírus da Leucemia Bovina/metabolismo , Regiões Promotoras Genéticas , Sequências Repetidas Terminais/genética
2.
Methods Mol Biol ; 2407: 3-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985653

RESUMO

The introduction of combination antiretroviral therapy (cART) has switched HIV-1 infection from a lethal disease to a chronic one. Indeed, cART is a lifelong treatment since its interruption is always followed by a rapid rebound of viremia from both cellular and anatomical viral reservoirs where the integrated HIV-1 provirus remains transcriptionally silent or maintains low-levels of viral replication, thereby preventing HIV-1 eradication. As therapeutic approach, the "shock and kill" strategy has emerged with the main objective to reactivate HIV-1 transcription from latency by using latency reversing agents (LRAs) prior to kill the reactivated infected cells by improving host immune responses. In this context, the development of tools such as HIV-1 latently infected cell lines have drastically increased our knowledge about HIV-1 latency and how to counteract this highly heterogeneous phenomenon. In this chapter, we will describe several chronically HIV-1 infected T-lymphocytic cell lines as useful surrogate models to study reversible HIV-1 proviral latency in CD4+ T cells in vitro before approaching more complex and expensive models.


Assuntos
Linfócitos T CD4-Positivos , Linhagem Celular , Infecções por HIV , HIV-1 , Provírus , Latência Viral , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Provírus/fisiologia , Ativação Viral
3.
Annu Rev Virol ; 8(1): 491-514, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586875

RESUMO

Combinatory antiretroviral therapy (cART) reduces human immunodeficiency virus type 1 (HIV-1) replication but is not curative because cART interruption almost invariably leads to a rapid rebound of viremia due to the persistence of stable HIV-1-infected cellular reservoirs. These reservoirs are mainly composed of CD4+ T cells harboring replication-competent latent proviruses. A broadly explored approach to reduce the HIV-1 reservoir size, the shock and kill strategy, consists of reactivating HIV-1 gene expression from the latently infected cellular reservoirs (the shock), followed by killing of the virus-producing infected cells (the kill). Based on improved understanding of the multiple molecular mechanisms controlling HIV-1 latency, distinct classes of latency reversing agents (LRAs) have been studied for their efficiency to reactivate viral gene expression in in vitro and ex vivo cell models. Here, we provide an up-to-date review of these different mechanistic classes of LRAs and discuss optimizations of the shock strategy by combining several LRAs simultaneously or sequentially.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Ativação Viral , Latência Viral
4.
Semin Immunol ; 51: 101478, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33972164

RESUMO

The "shock-and-kill" strategy is one of the most explored HIV-1 cure approaches to eliminate latent virus. This strategy is based on HIV-1 reactivation using latency reversing agents (LRAs) to reactivate latent proviruses (the "shock" phase) and to induce subsequent elimination of the reactivated cells by immune responses or virus-induced cytopathic effects (the "kill" phase). Studies using immunomodulatory LRAs such as blockers of immune checkpoint molecules, toll-like receptor agonists, cytokines and CD8+ T cell depleting antibodies showed promising potential as LRAs inducing directly or indirectly cellular pathways known to control HIV transcription. However, the precise molecular mechanisms by which these immunomodulatory LRAs reverse latency remain incompletely understood. Together with the heterogenous nature of HIV-1 latency, this lack of understanding complicates efforts to develop more efficient and safer cure strategies. Hence, deciphering those mechanisms is pivotal in designing approaches to eliminate latent HIV infection.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Ativação Viral , Latência Viral
5.
Sci Rep ; 11(1): 2692, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514850

RESUMO

HIV-1 latency generates reservoirs that prevent viral eradication by the current therapies. To find strategies toward an HIV cure, detailed understandings of the molecular mechanisms underlying establishment and persistence of the reservoirs are needed. The cellular transcription factor KAP1 is known as a potent repressor of gene transcription. Here we report that KAP1 represses HIV-1 gene expression in myeloid cells including microglial cells, the major reservoir of the central nervous system. Mechanistically, KAP1 interacts and colocalizes with the viral transactivator Tat to promote its degradation via the proteasome pathway and repress HIV-1 gene expression. In myeloid models of latent HIV-1 infection, the depletion of KAP1 increased viral gene elongation and reactivated HIV-1 expression. Bound to the latent HIV-1 promoter, KAP1 associates and cooperates with CTIP2, a key epigenetic silencer of HIV-1 expression in microglial cells. In addition, Tat and CTIP2 compete for KAP1 binding suggesting a dynamic modulation of the KAP1 cellular partners upon HIV-1 infection. Altogether, our results suggest that KAP1 contributes to the establishment and the persistence of HIV-1 latency in myeloid cells.


Assuntos
Regulação Viral da Expressão Gênica , Infecções por HIV/metabolismo , HIV-1/metabolismo , Células Mieloides/metabolismo , Transcrição Gênica , Proteína 28 com Motivo Tripartido/metabolismo , Células HEK293 , Infecções por HIV/genética , HIV-1/genética , Humanos , Células Mieloides/virologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
6.
Viruses ; 12(12)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287435

RESUMO

Despite the introduction of combinatory antiretroviral therapy (cART), HIV-1 infection cannot be cured and is still one of the major health issues worldwide. Indeed, as soon as cART is interrupted, a rapid rebound of viremia is observed. The establishment of viral latency and the persistence of the virus in cellular reservoirs constitute the main barrier to HIV eradication. For this reason, new therapeutic approaches have emerged to purge or restrain the HIV-1 reservoirs in order to cure infected patients. However, the viral latency is a multifactorial process that depends on various cellular mechanisms. Since these new therapies mainly target viral transcription, their development requires a detailed and precise understanding of the regulatory mechanism underlying HIV-1 transcription. In this review, we discuss the complex molecular transcriptional network regulating HIV-1 gene expression by focusing on the involvement of host cell factors that could be used as potential drug targets to design new therapeutic strategies and, to a larger extent, to reach an HIV-1 functional cure.


Assuntos
Regulação Viral da Expressão Gênica , Infecções por HIV/virologia , HIV-1/fisiologia , RNA Viral , Transcrição Gênica , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Interações Hospedeiro-Patógeno , Humanos , Ativação Viral , Latência Viral
7.
Sci Rep ; 7: 43221, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256531

RESUMO

Human T-lymphotropic Virus type 1 (HTLV-1) infection is characterized by viral latency in the majority of infected cells and by the absence of viremia. These features are thought to be due to the repression of viral sense transcription in vivo. Here, our in silico analysis of the HTLV-1 Long Terminal Repeat (LTR) promoter nucleotide sequence revealed, in addition to the four Sp1 binding sites previously identified, the presence of two additional potential Sp1 sites within the R region. We demonstrated that the Sp1 and Sp3 transcription factors bound in vitro to these two sites and compared the binding affinity for Sp1 of all six different HTLV-1 Sp1 sites. By chromatin immunoprecipitation experiments, we showed Sp1 recruitment in vivo to the newly identified Sp1 sites. We demonstrated in the nucleosomal context of an episomal reporter vector that the Sp1 sites interfered with both the sense and antisense LTR promoter activities. Interestingly, the Sp1 sites exhibited together a repressor effect on the LTR sense transcriptional activity but had no effect on the LTR antisense activity. Thus, our results demonstrate the presence of two new functional Sp1 binding sites in the HTLV-1 LTR, which act as negative cis-regulatory elements of sense viral transcription.


Assuntos
Repressão Epigenética , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/genética , Fator de Transcrição Sp1/metabolismo , Sequências Repetidas Terminais , Transcrição Gênica , Sítios de Ligação , Imunoprecipitação da Cromatina , Células HEK293 , Humanos , Células Jurkat , Ligação Proteica , Fator de Transcrição Sp3/metabolismo
8.
Sci Rep ; 6: 31125, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545598

RESUMO

Bovine leukemia virus latency is a viral strategy used to escape from the host immune system and contribute to tumor development. However, a highly expressed BLV micro-RNA cluster has been reported, suggesting that the BLV silencing is not complete. Here, we demonstrate the in vivo recruitment of RNA polymerase III to the BLV miRNA cluster both in BLV-latently infected cell lines and in ovine BLV-infected primary cells, through a canonical type 2 RNAPIII promoter. Moreover, by RPC6-knockdown, we showed a direct functional link between RNAPIII transcription and BLV miRNAs expression. Furthermore, both the tumor- and the quiescent-related isoforms of RPC7 subunits were recruited to the miRNA cluster. We showed that the BLV miRNA cluster was enriched in positive epigenetic marks. Interestingly, we demonstrated the in vivo recruitment of RNAPII at the 3'LTR/host genomic junction, associated with positive epigenetic marks. Functionally, we showed that the BLV LTR exhibited a strong antisense promoter activity and identified cis-acting elements of an RNAPII-dependent promoter. Finally, we provided evidence for an in vivo collision between RNAPIII and RNAPII convergent transcriptions. Our results provide new insights into alternative ways used by BLV to counteract silencing of the viral 5'LTR promoter.


Assuntos
Genoma Viral , Vírus da Leucemia Bovina/enzimologia , Vírus da Leucemia Bovina/genética , RNA Polimerase III/genética , RNA Polimerase II/genética , Regiões 3' não Traduzidas , Animais , Sítios de Ligação/genética , Bovinos , Linhagem Celular , Epigênese Genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Subunidades Proteicas , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase III/química , RNA Polimerase III/metabolismo , RNA Interferente Pequeno/genética , Ovinos , Transcrição Gênica
9.
Development ; 142(19): 3416-28, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26443638

RESUMO

V1 interneurons are inhibitory neurons that play an essential role in vertebrate locomotion. The molecular mechanisms underlying their genesis remain, however, largely undefined. Here, we show that the transcription factor Prdm12 is selectively expressed in p1 progenitors of the hindbrain and spinal cord in the frog embryo, and that a similar restricted expression profile is observed in the nerve cord of other vertebrates as well as of the cephalochordate amphioxus. Using frog, chick and mice, we analyzed the regulation of Prdm12 and found that its expression in the caudal neural tube is dependent on retinoic acid and Pax6, and that it is restricted to p1 progenitors, due to the repressive action of Dbx1 and Nkx6-1/2 expressed in the adjacent p0 and p2 domains. Functional studies in the frog, including genome-wide identification of its targets by RNA-seq and ChIP-Seq, reveal that vertebrate Prdm12 proteins act as a general determinant of V1 cell fate, at least in part, by directly repressing Dbx1 and Nkx6 genes. This probably occurs by recruiting the methyltransferase G9a, an activity that is not displayed by the amphioxus Prdm12 protein. Together, these findings indicate that Prdm12 promotes V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes, and suggest that this function might have only been acquired after the split of the vertebrate and cephalochordate lineages.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células de Renshaw/fisiologia , Xenopus/embriologia , Animais , Sequência de Bases , Embrião de Galinha , Imunoprecipitação da Cromatina , Biologia Computacional , Primers do DNA/genética , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Rombencéfalo/metabolismo , Análise de Sequência de RNA , Especificidade da Espécie , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA