Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101250, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38737799

RESUMO

CAR-T cell therapies have consolidated their position over the last decade as an effective alternative to conventional chemotherapies for the treatment of a number of hematological malignancies. With an exponential increase in the number of commercial therapies and hundreds of phase 1 trials exploring CAR-T cell efficacy in different settings (including autoimmunity and solid tumors), demand for manufacturing capabilities in recent years has considerably increased. In this review, we explore the current landscape of CAR-T cell manufacturing and discuss some of the challenges limiting production capacity worldwide. We describe the latest technical developments in GMP production platform design to facilitate the delivery of a range of increasingly complex CAR-T cell products, and the challenges associated with translation of new scientific developments into clinical products for patients. We explore all aspects of the manufacturing process, namely early development, manufacturing technology, quality control, and the requirements for industrial scaling. Finally, we discuss the challenges faced as a small academic team, responsible for the delivery of a high number of innovative products to patients. We describe our experience in the setup of an effective bench-to-clinic pipeline, with a streamlined workflow, for implementation of a diverse portfolio of phase 1 trials.

3.
Blood Cancer J ; 14(1): 66, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622139

RESUMO

CAR T-cell therapy has transformed relapsed/refractory (r/r) B-cell precursor acute lymphoblastic leukaemia (B-ALL) management and outcomes, but following CAR T infusion, interventions are often needed. In a UK multicentre study, we retrospectively evaluated tisagenlecleucel outcomes in all eligible patients, analysing overall survival (OS) and event-free survival (EFS) with standard and stringent definitions, the latter including measurable residual disease (MRD) emergence and further anti-leukaemic therapy. Both intention-to-treat and infused cohorts were considered. We collected data on feasibility of delivery, manufacture, toxicity, cause of therapy failure and followed patients until death from any cause. Of 142 eligible patients, 125 received tisagenlecleucel, 115/125 (92%) achieved complete remission (CR/CRi). Severe cytokine release syndrome and neurotoxicity occurred in 16/123 (13%) and 10/123 (8.1%), procedural mortality was 3/126 (2.4%). The 2-year intent to treat OS and EFS were 65.2% (95%CI 57.2-74.2%) and 46.5% (95%CI 37.6-57.6%), 2-year intent to treat stringent EFS was 35.6% (95%CI 28.1-44.9%). Median OS was not reached. Sixty-two responding patients experienced CAR T failure by the stringent event definition. Post failure, 1-year OS and standard EFS were 61.2% (95%CI 49.3-75.8) and 55.3% (95%CI 43.6-70.2). Investigation of CAR T-cell therapy for B-ALL delivered on a country-wide basis, including following patients beyond therapy failure, provides clinicians with robust outcome measures. Previously, outcomes post CAR T-cell therapy failure were under-reported. Our data show that patients can be successfully salvaged in this context with good short-term survival.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Criança , Humanos , Adolescente , Análise de Intenção de Tratamento , Estudos Retrospectivos , Receptores de Antígenos de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19
4.
Cancers (Basel) ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38539542

RESUMO

Renal cell carcinoma (RCC) affects over 400,000 patients globally each year, and 30% of patients present with metastatic disease. Current standard of care therapy for metastatic RCC involve TKIs and ICIs, including combinatorial strategies, but this offers only modest clinical benefit. Novel treatment approaches are warranted, and cell-based immunotherapies for RCC hold significant promise. These are currently being tested in the pre-clinical setting and in early phase clinical trials. Here, we review the landscape of cellular immunotherapy for RCC in the context of currently available therapies, with a particular focus on defining the current best antigenic targets, the range of cell therapy products being explored in RCC, and how advanced engineering solutions may further enhance these therapies in the RCC space.

5.
Hemasphere ; 8(1): e29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38434533

RESUMO

Infection has emerged as the chief cause of non-relapse mortality (NRM) post CD19-targeting chimeric antigen receptor T-cell therapy (CAR-T) therapy. Even though up to 50% of patients may remain infection-free, many suffer multiple severe, life-threatening, or fatal infectious events. The primary aim of this study was to explore severe and life-threatening infections post licensed CAR-T therapy in large B-cell lymphoma, with a focus on the role of disease burden and disease sites in assessing individual risk. We sought to understand the cohort of patients who experience ≥2 infections and those at the highest risk of infectious NRM. Our analysis identifies a higher disease burden after bridging therapy as associated with infection events. Those developing ≥2 infections emerged as a uniquely high-risk cohort, particularly if the second (or beyond) infection occurred during an episode of immune effector cell-associated neurotoxicity syndrome (ICANS) or while on steroids and/or anakinra for ICANS. Herein, we also describe the first reported cases of "CAR-T cold sepsis," a phenomenon characterized by the lack of an appreciable systemic inflammatory response at the time of detection of infection. We propose a risk-based strategy to encourage heightened clinician awareness of cold sepsis, with a view to reducing NRM.

7.
Lancet Infect Dis ; 24(4): e256-e265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310904

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy leads to durable remissions in relapsed B-cell cancers, but treatment-associated immunocompromise leads to a substantial morbidity and mortality risk from atypical infection. Mucormycosis is an aggressive and invasive fungal infection with a mortality risk of 40-80% in patients with haematological malignancies. In this Grand Round, we report a case of mucormycosis in a 54-year-old patient undergoing CAR T-cell therapy who reached complete clinical control of Mucorales with combined aggressive surgical debridement, antifungal pharmacotherapy, and reversal of underlying risk factors, but with substantial morbidity from extensive oro-facial surgery affecting the patient's speech and swallowing. For broader context, we present our case alongside an US Food and Drugs Administration adverse events reporting database analysis and a review of the literature to fully evaluate the clinical burden of mucormycosis in patients treated with CAR T-cell therapy. We discuss epidemiology, clinical features, diagnostic tools, and current frameworks for treatment and prophylaxis. We did this analysis to promote increased vigilance for mucormycosis among physicians specialising in CAR T-cell therapy and microbiologists and to illustrate the importance of early initiation of therapy to effectively manage this condition. Mucormycosis prevention and early diagnosis, through targeted surveillance and mould prevention in patients at highest risk and Mucorales-specific screening assays, is likely to be key to improving outcomes in patients treated with CAR T-cell therapy.


Assuntos
Mucormicose , Receptores de Antígenos Quiméricos , Estados Unidos , Humanos , Pessoa de Meia-Idade , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/uso terapêutico , Mucormicose/etiologia , Mucormicose/terapia , Receptores de Antígenos de Linfócitos T , United States Food and Drug Administration , Recidiva Local de Neoplasia/etiologia , Terapia Baseada em Transplante de Células e Tecidos
8.
J Clin Oncol ; 42(2): 205-217, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37874957

RESUMO

PURPOSE: Approximately 30%-40% of patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL) infused with CD19-targeted chimeric antigen receptor (CAR) T cells achieve durable responses. Consensus guidelines suggest avoiding bendamustine before apheresis, but specific data in this setting are lacking. We report distinct outcomes after CAR T-cell therapy according to previous bendamustine exposure. METHODS: The study included CAR T-cell recipients from seven European sites. Safety, efficacy, and CAR T-cell expansion kinetics were analyzed according to preapheresis bendamustine exposure. Additional studies on the impact of the washout period and bendamustine dose were performed. Inverse probability treatment weighting (IPTW) and propensity score matching (PSM) analyses were carried out for all efficacy comparisons between bendamustine-exposed and bendamustine-naïve patients. RESULTS: The study included 439 patients with R/R LBCL infused with CD19-targeted commercial CAR T cells, of whom 80 had received bendamustine before apheresis. Exposed patients had significantly lower CD3+ cells and platelets at apheresis. These patients had a lower overall response rate (ORR, 53% v 72%; P < .01), a shorter progression-free survival (PFS, 3.1 v 6.2 months; P = .04), and overall survival (OS, 10.3 v 23.5 months; P = .01) in comparison with the bendamustine-naïve group. Following adjustment methods for baseline variables, these differences were mitigated. Focusing on the impact of bendamustine washout before apheresis, those with recent (<9 months) exposure (N = 42) displayed a lower ORR (40% v 72%; P < .01), shorter PFS (1.3 v 6.2 months; P < .01), and OS (4.6 v 23.5 months; P < .01) in comparison with bendamustine-naïve patients. These differences remained significant after IPTW and PSM analysis. Conversely, the cumulative dose of bendamustine before apheresis did not affect CAR-T efficacy outcomes. CONCLUSION: Recent bendamustine exposure before apheresis was associated with negative treatment outcomes after CD19-targeted CAR T-cell therapy and should be therefore avoided in CAR T-cell candidates.


Assuntos
Remoção de Componentes Sanguíneos , Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Humanos , Cloridrato de Bendamustina/efeitos adversos , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos
9.
Biology (Basel) ; 12(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37998018

RESUMO

Adoptive cell therapy (ACT) has transformed the treatment landscape for cancer and infectious disease through the investigational use of chimeric antigen receptor T-cells (CAR-Ts), tumour-infiltrating lymphocytes (TILs) and viral-specific T-cells (VSTs). Whilst these represent breakthrough treatments, there are subsets of patients who fail to respond to autologous ACT products. This is frequently due to impaired patient T-cell function or "fitness" as a consequence of prior treatments and age, and can be exacerbated by complex manufacturing protocols. Further, the manufacture of autologous, patient-specific products is time-consuming, expensive and non-standardised. Induced pluripotent stem cells (iPSCs) as an allogeneic alternative to patient-specific products can potentially overcome the issues outlined above. iPSC technology provides an unlimited source of rejuvenated iPSC-derived T-cells (T-iPSCs) or natural killer (NK) cells (NK-iPSCs), and in the context of the growing field of allogeneic ACT, iPSCs have enormous potential as a platform for generating off-the-shelf, standardised, "fit" therapeutics for patients. In this review, we evaluate current and future applications of iPSC technology in the CAR-T/NK, TIL and VST space. We discuss current and next-generation iPSC manufacturing protocols, and report on current iPSC-based adoptive therapy clinical trials to elucidate the potential of this technology as the future of ACT.

10.
Mol Ther Methods Clin Dev ; 31: 101123, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37886606

RESUMO

Base editing is a revolutionary gene-editing technique enabling the introduction of point mutations into the genome without generating detrimental DNA double-stranded breaks. Base-editing enzymes are commonly delivered in the form of modified linear messenger RNA (mRNA) that is costly to produce. Here, we address this problem by developing a simple protocol for manufacturing base-edited cells using circular RNA (circRNA), which is less expensive to synthesize. Compared with linear mRNA, higher editing efficiencies were achieved with circRNA, enabling an 8-fold reduction in the amount of RNA required. We used this protocol to manufacture a clinical dose (1 × 108 cells) of base-edited chimeric antigen receptor (CAR) T cells lacking expression of the inhibitory receptor, PD-1. Editing efficiencies of up to 86% were obtained using 0.25 µg circRNA/1 × 106 cells. Increased editing efficiencies with circRNA were attributed to more efficient translation. These results suggest that circRNA, which is less expensive to produce than linear mRNA, is a viable option for reducing the cost of manufacturing base-edited cells at scale.

11.
J Immunother Cancer ; 11(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37709295

RESUMO

BACKGROUND: AUTO1 is a fast off-rate CD19-targeting chimeric antigen receptor (CAR), which has been successfully tested in adult lymphoblastic leukemia. Tscm/Tcm-enriched CAR-T populations confer the best expansion and persistence, but Tscm/Tcm numbers are poor in heavily pretreated adult patients. To improve this, we evaluate the use of AKT inhibitor (VIII) with the aim of uncoupling T-cell expansion from differentiation, to enrich Tscm/Tcm subsets. METHODS: VIII was incorporated into the AUTO1 manufacturing process based on the semiautomated the CliniMACS Prodigy platform at both small and cGMP scale. RESULTS: AUTO1 manufactured with VIII showed Tscm/Tcm enrichment, improved expansion and cytotoxicity in vitro and superior antitumor activity in vivo. Further, VIII induced AUTO1 Th1/Th17 skewing, increased polyfunctionality, and conferred a unique metabolic profile and a novel signature for autophagy to support enhanced expansion and cytotoxicity. We show that VIII-cultured AUTO1 products from B-ALL patients on the ALLCAR19 study possess superior phenotype, metabolism, and function than parallel control products and that VIII-based manufacture is scalable to cGMP. CONCLUSION: Ultimately, AUTO1 generated with VIII may begin to overcome the product specific factors contributing to CD19+relapse.


Assuntos
Linfoma de Burkitt , Receptores de Antígenos Quiméricos , Adulto , Humanos , Proteínas Proto-Oncogênicas c-akt , Proteínas Adaptadoras de Transdução de Sinal , Inibidores da Angiogênese , Antígenos CD19 , Linfócitos T
13.
Transplant Cell Ther ; 29(11): 687.e1-687.e7, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633414

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) remains the sole curative option for myelofibrosis (MF). Relapse remains a significant problem, however, occurring in up to 20% to 30% of cases. Donor lymphocyte infusion (DLI) represents a potentially effective strategy for relapse prevention and management, but the optimal timing based on measurable residual disease/chimerism analyses and the choice of regimen remain undetermined. We performed a retrospective real-world analysis of a multicenter cohort of MF allo-HCT recipients from 8 European transplantation centers who received DLI between 2005 and 2022. Response was assessed using International Working Group-Myeloproliferative Neoplasms Research and Treatment-defined response criteria, and survival endpoints were estimated using the Kaplan-Meier estimator and log-rank test. The study included 28 patients with a median age of 58 years and a Karnofsky Performance Status of >80. The majority of patients had Dynamic International Prognostic Scoring System-plus intermediate-2 or high-risk disease at the time of allo-HCT. In vivo T cell depletion was used in 20 patients (71.2%), with 19 of the 20 receiving antithymocyte globulin. The indication for DLI was either "preemptive" (n = 15), due to a decrease in recipient chimerism (n = 13) or molecular relapse (n = 2), or "therapeutic" (n = 13) for clinician-defined hematologic/clinical relapse. No patient received DLI prophylactically. The median time of DLI administration was 23.4 months post allo-HCT. Of the 16 patients receiving multiple DLIs, 12 were part of a planned escalating dose regimen. The median follow-up from the time of first DLI was 55.4 months. The responses to DLI were complete response in 9 patients, partial response in 1 patient, and clinical improvement in 6 patients. Chimerism levels improved in 16 patients, and stable disease was reported in 5 patients. No response or progression was reported in 7 patients. DLI-induced acute graft-versus-host disease (aGVHD) was reported in 11 patients (39%), with grade III-IV aGVHD in 7 (25%). The median overall survival from the time of first DLI was 62.6 months, and the cumulative incidence of relapse/progression after first DLI was 30.8% at 6 months. This study highlights that good response rates can be achieved with DLI even after frank relapse in some patients in a cohort in which other treatment options are very limited. More prospective studies are warranted to identify the optimal DLI regimen and timing to improve patient outcomes.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Mielofibrose Primária , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Imunoterapia Adotiva/efeitos adversos , Mielofibrose Primária/terapia , Mielofibrose Primária/complicações , Recidiva Local de Neoplasia/complicações , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos , Recidiva
14.
Curr Opin Support Palliat Care ; 17(3): 231-239, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418578

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to provide clear guidance to health professionals delivering chimeric antigen receptor T-cell (CAR-T) therapy on the best supportive management throughout the CAR-T pathway, from referral to long-term follow-up, including psychosocial aspects. RECENT FINDINGS: CAR-T therapy has changed the treatment landscape for relapsed/refractory (r/r) B-cell malignancy. Approximately 40% of r/r B-cell leukaemia/lymphoma patients receiving CD19-targeted CAR-T therapy achieve durable remission following a single dose. The field is rapidly expanding to encompass new CAR-T products for indications such as multiple myeloma, mantle cell lymphoma and follicular lymphoma, and the number of patients eligible to receive CAR-T therapy is likely to continue to grow exponentially. CAR-T therapy is logistically challenging to deliver, with involvement of many stakeholders. In many cases, CAR-T therapy requires an extended inpatient hospital admission, particularly in older, comorbid patients, and is associated with potentially severe immune side effects. Further, CAR-T therapy can lead to protracted cytopenias that can last for several months accompanied by a susceptibility to infection. SUMMARY: For the reasons listed above, standardised, comprehensive supportive care is critically important to ensure that CAR-T therapy is delivered as safely as possible and that patients are fully informed of the risks and benefits, as well as the requirement for extended hospital admission and follow-up, to fully realise the potential of this transformative treatment modality.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Adulto , Idoso , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Imunoterapia Adotiva/efeitos adversos , Mieloma Múltiplo/tratamento farmacológico , Antígenos CD19/uso terapêutico
15.
Blood ; 142(10): 865-877, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37300386

RESUMO

Hematological toxicity is the most common adverse event after chimeric antigen receptor (CAR) T-cell therapy. Cytopenias can be profound and long-lasting and can predispose for severe infectious complications. In a recent worldwide survey, we demonstrated that there remains considerable heterogeneity in regard to current practice patterns. Here, we sought to build consensus on the grading and management of immune effector cell-associated hematotoxicity (ICAHT) after CAR T-cell therapy. For this purpose, a joint effort between the European Society for Blood and Marrow Transplantation (EBMT) and the European Hematology Association (EHA) involved an international panel of 36 CAR T-cell experts who met in a series of virtual conferences, culminating in a 2-day meeting in Lille, France. On the basis of these deliberations, best practice recommendations were developed. For the grading of ICAHT, a classification system based on depth and duration of neutropenia was developed for early (day 0-30) and late (after day +30) cytopenia. Detailed recommendations on risk factors, available preinfusion scoring systems (eg, CAR-HEMATOTOX score), and diagnostic workup are provided. A further section focuses on identifying hemophagocytosis in the context of severe hematotoxicity. Finally, we review current evidence and provide consensus recommendations for the management of ICAHT, including growth factor support, anti-infectious prophylaxis, transfusions, autologous hematopoietic stem cell boost, and allogeneic hematopoietic cell transplantation. In conclusion, we propose ICAHT as a novel toxicity category after immune effector cell therapy, provide a framework for its grading, review literature on risk factors, and outline expert recommendations for the diagnostic workup and short- and long-term management.


Assuntos
Hematologia , Transplante de Células-Tronco Hematopoéticas , Consenso , Imunoterapia Adotiva , Fatores Imunológicos
16.
Adv Exp Med Biol ; 1420: 117-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258787

RESUMO

Chimeric antigen receptor (CAR) T-cells are considered "living drugs" and offer a compelling alternative to conventional anticancer therapies. Briefly, T-cells are redirected, using gene engineering technology, toward a specific cancer cell surface target antigen via a synthetic chimeric antigen receptor (CAR) protein. CARs have a modular design comprising four main structures: an antigen-binding domain, a hinge region, a transmembrane domain, and one or more intracellular signaling domains for T-cell activation. A major challenge in the CAR T-cell manufacturing field is balancing product quality with scalability and cost-effectiveness, especially when transitioning from an academic clinical trial into a marketed product, to be implemented across many collection, manufacturing, and treatment sites. Achieving product consistency while circumnavigating the intrinsic variability associated with autologous products is an additional barrier. To overcome these limitations, a robust understanding of the product and its biological actions is crucial to establish a target product profile with a defined list of critical quality attributes to be assessed for each batch prior to product certification. Additional challenges arise as the field progresses, such as new safety considerations associated with the use of allogenic T-cells and genome editing tools. In this chapter, we will discuss the release and potency assays required for CAR T-cell manufacturing, covering their relevance, current challenges, and future perspectives.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Edição de Genes , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética
17.
Nat Med ; 29(4): 803-810, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024595

RESUMO

Cancer immunotherapies have unique toxicities. Establishment of grading scales and standardized grade-based treatment algorithms for toxicity syndromes can improve the safety of these treatments, as observed for cytokine release syndrome (CRS) and immune effector cell associated neurotoxicity syndrome (ICANS) in patients with B cell malignancies treated with chimeric antigen receptor (CAR) T cell therapy. We have observed a toxicity syndrome, distinct from CRS and ICANS, in patients treated with cell therapies for tumors in the central nervous system (CNS), which we term tumor inflammation-associated neurotoxicity (TIAN). Encompassing the concept of 'pseudoprogression,' but broader than inflammation-induced edema alone, TIAN is relevant not only to cellular therapies, but also to other immunotherapies for CNS tumors. To facilitate the safe administration of cell therapies for patients with CNS tumors, we define TIAN, propose a toxicity grading scale for TIAN syndrome and discuss the potential management of this entity, with the goal of standardizing both reporting and management.


Assuntos
Neoplasias , Síndromes Neurotóxicas , Humanos , Neoplasias/terapia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia , Inflamação , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Síndromes Neurotóxicas/etiologia
18.
Blood Adv ; 7(12): 2872-2883, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36724512

RESUMO

The impact of bridging therapy (BT) on CD19-directed chimeric antigen receptor T-cell (CD19CAR-T) outcomes in large B-cell lymphoma (LBCL) is poorly characterized. Current practice is guided through physician preference rather than established evidence. Identification of effective BT modalities and factors predictive of response could improve both CAR-T intention to treat and clinical outcomes. We assessed BT modality and response in 375 adult patients with LBCL in relation to outcomes after axicabtagene ciloleucel (Axi-cel) or tisagenlecleucel (Tisa-cel) administration. The majority of patients received BT with chemotherapy (57%) or radiotherapy (17%). We observed that BT was safe for patients, with minimal morbidity or mortality. We showed that complete or partial response to BT conferred a 42% reduction in disease progression and death after CD19CAR-T therapy. Multivariate analysis identified several factors associated with likelihood of response to BT, including response to last line therapy, the absence of bulky disease, and the use of polatuzumab-containing chemotherapy regimens. Our data suggested that complete or partial response to BT may be more important for Tisa-cel than for Axi-cel, because all patients receiving Tisa-cel with less than partial response to BT experienced frank relapse within 12 months of CD19CAR-T infusion. In summary, BT in LBCL should be carefully planned toward optimal response and disease debulking, to improve patient outcomes associated with CD19CAR-T. Polatuzumab-containing regimens should be strongly considered for all suitable patients, and failure to achieve complete or partial response to BT before Tisa-cel administration may prompt consideration of further lines of BT where possible.


Assuntos
Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Adulto , Humanos , Recidiva Local de Neoplasia , Terapia Ponte , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico
19.
Blood ; 141(20): 2470-2482, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36821767

RESUMO

Relapse after CD19-directed chimeric antigen receptor T-cell (CAR-T) therapy for large B-cell lymphoma (LBCL) is commonly ascribed to antigen loss or CAR-T exhaustion. Multiantigen targeting and programmed cell death protein-1 blockade are rational approaches to prevent relapse. Here, we test CD19/22 dual-targeting CAR-T (AUTO3) plus pembrolizumab in relapsed/refractory LBCL (NCT03289455). End points include toxicity (primary) and response rates (secondary). Fifty-two patients received AUTO3 and 48/52 received pembrolizumab. Median age was 59 years (range, 27-83), 46/52 had stage III/ IV disease and median follow-up was 21.6 months. AUTO3 was safe; grade 1-2 and grade 3 cytokine release syndrome affected 18/52 (34.6%) and 1/52 (1.9%) patients, neurotoxicity arose in 4 patients (2/4, grade 3-4), and hemophagocytic lymphohistiocytosis affected 2 patients. Outpatient administration was tested in 20 patients, saving a median of 14 hospital days per patient. Overall response rates were 66% (48.9%, complete response [CR]; 17%, partial response). Median duration of remission (DOR) for CR patients was not reached and for all responding patients was 8.3 months (95% confidence interval [CI]: 3.0-not evaluable). 54.4% (CI: 32.8-71.7) of CR patients and 42.6% of all responding patients were projected to remain progression-free at ≥12 months. AUTO3 ± pembrolizumab for relapsed/refractory LBCL was safe and delivered durable remissions in 54.4% of complete responders, associated with robust CAR-T expansion. Neither dual-targeting CAR-T nor pembrolizumab prevented relapse in a significant proportion of patients, and future developments include next-generation-AUTO3, engineered for superior expansion in vivo, and selection of CAR binders active at low antigen densities.


Assuntos
Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Imunoterapia Adotiva , Linfócitos T , Antígenos CD19 , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
20.
Cytotherapy ; 25(3): 323-329, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36513573

RESUMO

BACKGROUND AIMS: The most widely accepted starting materials for chimeric antigen receptor T-cell manufacture are autologous CD3+ T cells obtained via the process of leukapheresis, also known as T-cell harvest. As this treatment modality gains momentum and apheresis units struggle to meet demand for harvest slots, strategies to streamline this critical step are warranted. METHODS: This retrospective review of 262 T-cell harvests, with a control cohort of healthy donors, analyzed the parameters impacting CD3+ T-cell yield in adults with B-cell malignancies. The overall aim was to design a novel predictive algorithm to guide the required processed blood volume (PBV) (L) on the apheresis machine to achieve a specific CD3+ target yield. RESULTS: Factors associated with CD3+ T-cell yield on multivariate analysis included peripheral blood CD3+ count (natural log, ×109/L), hematocrit (HCT) and PBV with coefficients of 0.86 (95% confidence interval [CI], 0.80-0.92, P < 0.001), 1.30 (95% CI, 0.51-2.08, P = 0.001) and 0.09 (95% CI, 0.07-0.11, P < 0.001), respectively. The authors' model, incorporating CD3+ cell count, HCT and PBV (L), with an adjusted R2 of 0.87 and root-mean-square error of 0.26 in the training dataset, was highly predictive of CD3+ cell yield in the testing dataset. An online application to estimate PBV using this algorithm can be accessed at https://cd3yield.shinyapps.io/cd3yield/. CONCLUSIONS: The authors propose a transferrable model that incorporates clinical and laboratory variables accessible pre-harvest for use across the field of T-cell therapy. Pending further validation, such a model may be used to generate an individual leukapheresis plan and streamline the process of cell harvest, a well-recognized bottleneck in the industry.


Assuntos
Receptores de Antígenos Quiméricos , Adulto , Humanos , Linfócitos T , Contagem de Células Sanguíneas , Transplante Autólogo , Leucaférese , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA