Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Biol ; 31(5): 396-415, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754138

RESUMO

In addition to undergoing evolution, members of biological populations may also migrate between locations. Examples include the spread of tumor cells from the primary tumor to distant metastases or the spread of pathogens from one host to another. One may represent migration histories by assigning a location label to each vertex of a given phylogenetic tree such that an edge connecting vertices with distinct locations represents a migration. Some biological populations undergo comigration, a phenomenon where multiple taxa from distinct lineages simultaneously comigrate from one location to another. In this work, we show that a previous problem statement for inferring migration histories that are parsimonious in terms of migrations and comigrations may lead to temporally inconsistent solutions. To remedy this deficiency, we introduce precise definitions of temporal consistency of comigrations in a phylogenetic tree, leading to three successive problems. First, we formulate the temporally consistent comigration problem to check if a set of comigrations is temporally consistent and provide a linear time algorithm for solving this problem. Second, we formulate the parsimonious consistent comigrations (PCC) problem, which aims to find comigrations given a location labeling of a phylogenetic tree. We show that PCC is NP-hard. Third, we formulate the parsimonious consistent comigration history (PCCH) problem, which infers the migration history given a phylogenetic tree and locations of its extant vertices only. We show that PCCH is NP-hard as well. On the positive side, we propose integer linear programming models to solve the PCC and PCCH problems. We demonstrate our algorithms on simulated and real data.


Assuntos
Algoritmos , Filogenia , Humanos , Simulação por Computador , Animais , Biologia Computacional/métodos
2.
Syst Biol ; 71(3): 610-629, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34450658

RESUMO

Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.].


Assuntos
Algoritmos , Duplicação Gênica , Biologia Computacional , Modelos Genéticos , Linhagem , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA