Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
4.
PLoS One ; 9(9): e107712, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229469

RESUMO

Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6 year-old patient contained a subpopulation of cells with morphology, clonogenicity and surface markers that overlapped with bone marrow mesenchymal stromal cells (BM-MSCs). These cells, designated as MEi (mesenchymal stem cell-like mucoepidermoid tumor) cells, could be differentiated towards mesenchymal lineages both with and without induction, and formed spheroids in vitro. The MEi cells shared several multipotent characteristics with BM-MSCs. However, they displayed differences to BM-MSCs in growth kinectics and gene expression profiles relating to cancer pathways and tube development. Despite this, the MEi cells did not possess in vivo tumor-initiating capacity, as proven by the absence of growth in situ after localized injection in immunocompromised mice. Our results provide an initial characterization of benign tracheal cancer-derived niche cells. We believe that this report could be of importance to further understand tracheal cancer initiation and progression as well as therapeutic development.


Assuntos
Tumor Mucoepidermoide/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Traqueia/patologia , Animais , Separação Celular , Criança , Feminino , Perfilação da Expressão Gênica , Genômica , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Tumor Mucoepidermoide/diagnóstico , Tumor Mucoepidermoide/genética , Neoplasias da Traqueia/diagnóstico , Neoplasias da Traqueia/genética
5.
Nat Commun ; 5: 3562, 2014 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-24736316

RESUMO

A tissue-engineered oesophageal scaffold could be very useful for the treatment of pediatric and adult patients with benign or malignant diseases such as carcinomas, trauma or congenital malformations. Here we decellularize rat oesophagi inside a perfusion bioreactor to create biocompatible biological rat scaffolds that mimic native architecture, resist mechanical stress and induce angiogenesis. Seeded allogeneic mesenchymal stromal cells spontaneously differentiate (proven by gene-, protein and functional evaluations) into epithelial- and muscle-like cells. The reseeded scaffolds are used to orthotopically replace the entire cervical oesophagus in immunocompetent rats. All animals survive the 14-day study period, with patent and functional grafts, and gain significantly more weight than sham-operated animals. Explanted grafts show regeneration of all the major cell and tissue components of the oesophagus including functional epithelium, muscle fibres, nerves and vasculature. We consider the presented tissue-engineered oesophageal scaffolds a significant step towards the clinical application of bioengineered oesophagi.


Assuntos
Esôfago/transplante , Células-Tronco Mesenquimais , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Diferenciação Celular , Esôfago/patologia , Imunocompetência , Miócitos de Músculo Liso/patologia , Ratos , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA