Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871122

RESUMO

Clostridioides difficile is a leading cause of antibiotic-associated diarrhea and nosocomial infection in the United States. The symptoms of C. difficile infection (CDI) are associated with the production of two homologous protein toxins, TcdA and TcdB. The toxins are considered bona fide targets for clinical diagnosis as well as the development of novel prevention and therapeutic strategies. While there are extensive studies that document these efforts, there are several gaps in knowledge that could benefit from the creation of new research tools. First, we now appreciate that while TcdA sequences are conserved, TcdB sequences can vary across the span of circulating clinical isolates. An understanding of the TcdA and TcdB epitopes that drive broadly neutralizing antibody responses could advance the effort to identify safe and effective toxin-protein chimeras and fragments for vaccine development. Further, an understanding of TcdA and TcdB concentration changes in vivo can guide research into how host and microbiome-focused interventions affect the virulence potential of C. difficile. We have developed a panel of alpaca-derived nanobodies that bind specific structural and functional domains of TcdA and TcdB. We note that many of the potent neutralizers of TcdA bind epitopes within the delivery domain, a finding that could reflect roles of the delivery domain in receptor binding and/or the conserved role of pore-formation in the delivery of the toxin enzyme domains to the cytosol. In contrast, neutralizing epitopes for TcdB were found in multiple domains. The nanobodies were also used for the creation of sandwich ELISA assays that allow for quantitation of TcdA and/or TcdB in vitro and in the cecal and fecal contents of infected mice. We anticipate these reagents and assays will allow researchers to monitor the dynamics of TcdA and TcdB production over time, and the impact of various experimental interventions on toxin production in vivo.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Anticorpos de Domínio Único , Animais , Camundongos , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Enterotoxinas/genética , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Epitopos/metabolismo , Proteínas de Bactérias/metabolismo
3.
PLoS One ; 15(4): e0221180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320392

RESUMO

At the molecular level, the circadian clock is regulated by a time delayed transcriptional-translational feedback loop in which the core proteins interact with each other rhythmically to drive daily biological rhythms. The C-terminal domain of a key clock protein PER2 (PER2c) plays a critically important role in the loop, not only for its interaction with the binding partner CRY proteins but also for the CRY/PER complex's translocation from the cytosol to the nucleus. Previous circular dichroism (CD) spectroscopic studies have shown that mouse PER2c (mPER2c) is less structured in solution by itself but folded into stable secondary structures upon interaction with mouse CRYs. To understand the stability and folding of human PER2c (hPER2c), we expressed and purified hPER2c. Three oligomerization forms of recombinant hPER2c were identified and thoroughly characterized through a combination of biochemical and biophysical techniques. Different to mPER2c, both thermal unfolding DLS and CD analyses suggested that all forms of hPER2c have very stable secondary structures in solution by themselves with melting temperatures higher than the physiological body temperature, indicating that hPER2c does not require CRY to fold. Furthermore, we examined the effects of EDTA, salt concentration, and a reducing agent on hPER2c folding and oligomerization. The ability of hPER2c forming oligomers reflects the potential role of hPER2c in the assembly of circadian rhythm core protein complexes.


Assuntos
Proteínas Circadianas Period/química , Sequência de Aminoácidos , Dicroísmo Circular , Difusão Dinâmica da Luz , Humanos , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA