Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(42): e2302076, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37247210

RESUMO

Transition metal dichalcogenide (TMD) coatings have attracted enormous scientific and industrial interest due to their outstanding tribological behavior. The paradigmatic example is MoS2 , even though selenides and tellurides have demonstrated superior tribological properties. Here, an innovative in operando conversion of Se nanopowders into lubricious 2D selenides, by sprinkling them onto sliding metallic surfaces coated with Mo and W thin films, is described. Advanced material characterization confirms the tribochemical formation of a thin tribofilm containing selenides, reducing the coefficient of friction down to below 0.1 in ambient air, levels typically reached using fully formulated oils. Ab initio molecular dynamics simulations under tribological conditions reveal the atomistic mechanisms that result in the shear-induced synthesis of selenide monolayers from nanopowders. The use of Se nanopowder provides thermal stability and prevents outgassing in vacuum environments. Additionally, the high reactivity of the Se nanopowder with the transition metal coating in the conditions prevailing in the contact interface yields highly reproducible results, making it particularly suitable for the replenishment of sliding components with solid lubricants, avoiding the long-lasting problem of TMD-lubricity degradation caused by environmental molecules. The suggested straightforward approach demonstrates an unconventional and smart way to synthesize TMDs in operando and exploit their friction- and wear-reducing impact.

2.
Cartilage ; 13(2_suppl): 908S-919S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-31779468

RESUMO

OBJECTIVE: Cobalt and chromium (CoCr) ions from metal implants are released into the joint due to biotribocorrosion, inducing apoptosis and altering gene expression in various cell types. Here, we asked whether CoCr ions concentration-dependently changed viability, transcriptional activity, and inflammatory response in human articular chondrocytes. DESIGN: Human articular chondrocytes were exposed to Co (1.02-16.33 ppm) and Cr (0.42-6.66 ppm) ions and cell viability and early/late apoptosis (annexin V and 7-AAD) were assessed in 2-dimensional cell cultures using the XTT assay and flow cytometry, respectively. Changes in chondrocyte morphology were assessed using transmitted light microscopy. The effects of CoCr ions on transcriptional activity of chondrocytes were evaluated by quantitative polymerase chain reaction (qPCR). The inflammatory responses were determined by measuring the levels of released pro-inflammatory cytokines (interleukin-1ß [IL-1ß], IL-6, IL-8, and tumor necrosis factor-α [TNF-α]). RESULTS: CoCr ions concentration-dependently reduced metabolic activity and induced early and late apoptosis after 24 hours in culture. After 72 hours, the majority of chondrocytes (>90%) were apoptotic at the highest concentrations of CoCr ions (16.33/6/66 ppm). SOX9 expression was concentration-dependently enhanced, whereas expression of COL2A1 linearly decreased after 24 hours. IL-8 release was enhanced proportionally to CoCr ions levels, whereas IL-1ß, IL-6, and TNF-α levels were not affected by the treatments. CONCLUSIONS: CoCr ions showed concentration- and time-dependent effects on articular chondrocytes. Fractions of apoptotic articular chondrocytes were proportional to CoCr ion concentrations. In addition, metabolic activity and expression of chondrocyte-specific genes were decreased by CoCr ions. Furthermore, exposure to CoCr ions caused a release of pro-inflammatory cytokines.


Assuntos
Condrócitos , Cobalto , Células Cultivadas , Condrócitos/metabolismo , Cromo/metabolismo , Cromo/toxicidade , Cobalto/metabolismo , Cobalto/farmacologia , Humanos , Íons/metabolismo , Íons/farmacologia
3.
Materials (Basel) ; 14(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375571

RESUMO

The microstructural evolution in the near-surface regions of a dry sliding interface has considerable influence on its tribological behavior and is driven mainly by mechanical energy and heat. In this work, we use large-scale molecular dynamics simulations to study the effect of temperature on the deformation response of FCC CuNi alloys of several compositions under various normal pressures. The microstructural evolution below the surface, marked by mechanisms spanning grain refinement, grain coarsening, twinning, and shear layer formation, is discussed in depth. The observed results are complemented by a rigorous analysis of the dislocation activity near the sliding interface. Moreover, we define key quantities corresponding to deformation mechanisms and analyze the time-independent differences between 300 K and 600 K for all simulated compositions and normal pressures. Raising the Ni content or reducing the temperature increases the energy barrier to activate dislocation activity or promote plasticity overall, thus increasing the threshold stress required for the transition to the next deformation regime. Repeated distillation of our quantitative analysis and successive elimination of spatial and time dimensions from the data allows us to produce a 3D map of the dominating deformation mechanism regimes for CuNi alloys as a function of composition, normal pressure, and homologous temperature.

4.
ACS Appl Mater Interfaces ; 12(28): 32197-32208, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539335

RESUMO

The origin of friction and wear in polycrystalline materials is intimately connected with their microstructural response to interfacial stresses. Although many mechanisms that govern microstructure evolution in sliding contacts are generally understood, it is still a challenge to ascertain which mechanisms matter under what conditions, which limits the development of tailor-made microstructures for reducing friction and wear. Here, we shed light on the circumstances that promote plastic deformation and surface damage by studying several face-centered cubic CuNi alloys subjected to sliding with molecular dynamics simulations featuring tens of millions of atoms. By analyzing the depth- and time-dependent evolution of the grain size, twinning, shear, and stresses in the aggregate, we derive a deformation mechanism map for CuNi alloys. We verify the predictions of this map against focused ion beam images of the near-surface regions of CuNi alloys that were experimentally subjected to similar loading conditions. Our results may serve as a tool for finding optimum material compositions within a specified operating range.

5.
J Orthop Res ; 37(12): 2531-2539, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31334864

RESUMO

The aim of this in vitro study was to investigate the response of articular cartilage to frictional load when sliding against a metal implant, and identify potential mechanisms of damage to articular cartilage in a metal-on-cartilage pairing. Bovine osteochondral cylinders were reciprocally slid against metal cylinders (cobalt-chromium-molybdenum alloy) with several variations of load and sliding velocity using a microtribometer. The effects of different loads and velocities, and the resulting friction coefficients on articular cartilage, were evaluated by measuring histological and metabolic outcomes. Moreover, the biotribocorrosion of the metal was determined. Chondrocytes stimulated with high load and velocity showed increased metabolic activity and cartilage-specific gene expression. In addition, higher load and velocity resulted in biotribocorrosion of the metal implant and damage to the surface of the articular cartilage, whereas low velocity and a high coefficient of friction increased the expression of catabolic genes. Articular cartilage showed particular responses to load and velocity when sliding against a metal implant. Moreover, metal implants showed tribocorrosion. Therefore, corrosion particles may play a role in the mechano-biochemical wear of articular cartilage after implantation of a metal implant. These findings may be useful to surgeons performing resurfacing procedures and total knee arthroplasty. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 37:2531-2539, 2019.


Assuntos
Cartilagem Articular/fisiologia , Cartilagem Articular/cirurgia , Fricção/fisiologia , Animais , Bovinos , Condrócitos/metabolismo , Corrosão , Metais , Próteses e Implantes , Estresse Mecânico
6.
ACS Appl Mater Interfaces ; 10(28): 24288-24301, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29933689

RESUMO

We performed large-scale molecular dynamics (MD) simulations to study the transient softening stage that has been observed experimentally in sliding interfaces subject to strain path changes. The occurrence of this effect can be of crucial importance for the energy efficiency and wear resistance of systems that experience changes in the sliding direction, such as bearings or gears in wind parks, piston rings in combustion engines, or wheel-rail contacts for portal cranes. We therefore modeled the sliding of a rough counterbody against two polycrystalline substrates of face-centered cubic (fcc) copper and body-centered cubic (bcc) iron with initial near-surface grain sizes of 40 nm. The microstructural development of these substrates was monitored and quantified as a function of time, depth, and applied pressure during unidirectional sliding for 7 ns. The results were then compared to the case of sliding in one direction for 5 ns and reversing the sliding direction for an additional 2 ns. We observed the generation of partial dislocations, grain refinement, and rotation as well as twinning (for fcc) in the near-surface region. All microstructures were increasingly affected by these processes when maintaining the sliding direction but recovered to a great extent upon sliding reversal up to applied pressures of 0.4 GPa in the case of fcc Cu and 1.5 GPa for bcc Fe. We discuss the applicability and limits of our polycrystalline MD model for reproducing well-known bulk phenomena such as the Bauschinger effect in interfacial processes.

7.
Nanoscale ; 10(7): 3281-3290, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29384160

RESUMO

MoS2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS2-rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS2 nanotubes. The reason is that while MoO3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS2 nanotubes progressively degrade by oxidation thus losing lubricity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA