Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Foods ; 13(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38731792

RESUMO

Phycocyanin is a highly valued pigment present in Spirulina platensis biomass with applications in the food industry in terms of biorefinery concepts; specifically, its antioxidant and antimicrobial capacity are an advantage that could be incorporated into a food matrix. This study aims to use rice husk as an alternative culture medium for S. platensis biomass growth and phycocyanin extraction by ohmic heating processing using a 3D-printed reactor. S. platensis was cultivated in rice husk extract (RHE) from 0-100% (v/v). The highest content of microalgal biomass was 1.75 ± 0.01 g/L, with a specific growth rate of 0.125 ± 0.01 h-1. For the phycocyanin extraction under an ohmic heating process, a 3D-printed reactor was designed and built. To optimize phycocyanin extraction, a central composite rotatable design (CCDR) was evaluated, with three factors: time (min), temperature (°C), and pH. The highest phycocyanin content was 75.80 ± 0.98 mg/g in S. platensis biomass grown with rice husk extract. Ohmic heating is a promising method for rapid phycocyanin extraction, and rice husk as a culture medium is an alternative for the growth of S. platensis biomass in the integration of second- and third-generation biorefineries.

2.
Foods ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672815

RESUMO

The Cucurbitaceae family is an extensive group of fruits and vegetables that exhibit common characteristics; for example, they are farmed on a global scale and exhibit a wide range of applications, including fresh consumption and use in various food and beverage products. As is frequent, many species or genera share a common name, and this can lead to some confusion when looking for information about a specific variety. In this review, we describe the findings about the biological activity, like antibacterial, antiviral, antidiabetic, and anticancer properties, of two genera of this family, Cucumis and Momordica, which have been characterized and evaluated in several research studies and regarding which information is readily accessible. Those activities rely on the various physicochemical qualities and nutritional content of each variety, including factors like ß-carotene and polyphenols, among others. The goal of this review is to provide a rapid search for each activity examined in the literature, enabling future research on their potential uses in functional foods and nutraceutical supplements.

3.
Bioresour Technol ; 394: 130208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113947

RESUMO

Microalgae, highly prized for their protein, lipid, carbohydrate, phycocyanin, and carotenoid-rich biomass, have garnered significant industrial attention in the context of third-generation (3G) biorefineries, seeking sustainable alternatives to non-renewable resources. Two primarily cultivation methods, open ponds and closed photobioreactors systems, have emerged. Open ponds, favored for their cost-effectiveness in large-scale industrial production, although lacking precise environmental control, contrast with closed photobioreactors, offering controlled conditions and enhanced biomass production at the laboratory scale. However, their high operational costs challenge large-scale deployment. This review comprehensively examines the strength, weakness, and typical designs of both outdoor and indoor microalgae cultivation systems, with an emphasis on their application in terms of biorefinery concept. Additionally, it incorporates techno-economic analyses, providing insights into the financial aspects of microalgae biomass production. These multifaceted insights, encompassing both technological and economic dimensions, are important as the global interest in harnessing microalgae's valuable resources continue to grow.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Biocombustíveis , Custos e Análise de Custo
4.
Foods ; 12(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37048219

RESUMO

Maya nut (Brosimum alicastrum) is a novel food with high nutritional value. This research aimed to evaluate the nutritional and antioxidant properties of Maya nut flour (MNF) made from seeds dried by different methods (sun-dried and using hot air at 45 °C and 60 °C) to explore its incorporation into cookies and evaluate its nutritional and functional properties. The naturally sun-dried flour (NF) had the highest content of ash (3.64 ± 0.11 g/100 g), protein (6.35 ± 0.44 g/100 g), crude fiber (6.75 ± 0.29 g/100 g), and functional properties (water and oil absorption). The color of the flour was affected by the different drying methods. While the drying methods influenced the total polyphenolic content (TPC) and antioxidant activity (AA) of MNF, they did not affect the morphology of the native starch or generated important molecular-structural changes. The substitution of 60% of wheat flour with NF in the cookie's formula increased the protein and fiber content, whereas 20% substitution increased its AA. MNF is a source of protein, dietary fiber, micronutrients, and functional compounds that can enrich cookie formulations.

5.
Bioresour Technol ; 369: 128448, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513304

RESUMO

Sargassum spp. is a biomass that can potentially use as an alternative for bioethanol production. Hydrothermal processes (liquid hot water and steam explosion pretreatment) were carried out at different operational conditions. Enzymatic hydrolysis performed a preliminary test with different ratios 1:1 and 1:2 (cellulases and hemicellulases) of enzyme loading, once selected 1:2 ratio was obtained conversion yield of 99.91% and therefore carried a scale-up in stirred bioreactor getting 95.92% saccharification yield. Pre-simultaneous saccharification and fermentation strategy was performed in a continuous stirred tank bioreactor (CSTBR), producing ethanol yield of 57.69%, and for simultaneous saccharification and fermentation strategy was performed in a bubble column reactor was 71.37% ethanol yield. The energy efficiency was analyzed in different scenarios; the best data was 30.19 (gsugar/MJ) in the bioreactor enzymatic hydrolysis process. This development allows for establishing the conditions for a third-generation biorefinery on a circular bioeconomy using Sargassum biomass.


Assuntos
Sargassum , Alga Marinha , Vapor , Biomassa , Água , Hidrólise , Fermentação , Etanol , Biocombustíveis
6.
Bioresour Technol ; 369: 128469, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509309

RESUMO

The development and sustainability of second-generation biorefineries are essential for the production of high added value compounds and biofuels and their application at the industrial level. Pretreatment is one of the most critical stages in biomass processing. In this specific case, hydrothermal pretreatments (liquid hot water [LHW] and steam explosion [SE]) are considered the most promising process for the fractionation, hydrolysis and structural modifications of biomass. This review focuses on architecture of the plant cell wall and composition, fundamentals of hydrothermal pretreatment, process design integration, the techno-economic parameters of the solubilization of lignocellulosic biomass (LCB) focused on the operational costs for large-scale process implementation and the global manufacturing cost. In addition, profitability indicators are evaluated between the value-added products generated during hydrothermal pretreatment, advocating a biorefinery implementation in a circular economy framework. In addition, this review includes an analysis of environmental aspects of sustainability involved in hydrothermal pretreatments.


Assuntos
Vapor , Água , Biomassa , Análise Custo-Benefício , Biocombustíveis , Lignina
7.
Molecules ; 27(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745010

RESUMO

The development of green technologies and bioprocesses such as solid-state fermentation (SSF) is important for the processing of macroalgae biomass and to reduce the negative effect of Sargassum spp. on marine ecosystems, as well as the production of compounds with high added value such as fungal proteins. In the present study, Sargassum spp. biomass was subjected to hydrothermal pretreatments at different operating temperatures (150, 170, and 190 °C) and pressures (3.75, 6.91, and 11.54 bar) for 50 min, obtaining a glucan-rich substrate (17.99, 23.86, and 25.38 g/100 g d.w., respectively). The results indicate that Sargassum pretreated at a pretreatment temperature of 170 °C was suitable for fungal growth. SSF was performed in packed-bed bioreactors, obtaining the highest protein content at 96 h (6.6%) and the lowest content at 72 h (4.6%). In contrast, it was observed that the production of fungal proteins is related to the concentration of sugars. Furthermore, fermentation results in a reduction in antinutritional elements, such as heavy metals (As, Cd, Pb, Hg, and Sn), and there is a decrease in ash content during fermentation kinetics. Finally, this work shows that Aspergillus oryzae can assimilate nutrients found in the pretreated Sargassum spp. to produce fungal proteins as a strategy for the food industry.


Assuntos
Sargassum , Biomassa , Reatores Biológicos/microbiologia , Ecossistema , Fermentação , Proteínas Fúngicas
8.
Bioresour Technol ; 351: 127044, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35337992

RESUMO

This review aims to present an analysis and discussion on the processing of lignocellulosic biomass in terms of biorefinery concept and circular bioeconomy operating at high solids lignocellulosic (above 15% [w/w]) at the pretreatment, enzymatic hydrolysis stage, and fermentation strategy for an integrated lignocellulosic bioprocessing. Studies suggest high solids concentration enzymatic hydrolysis for improved sugars yields and methods to overcome mass transport constraints. Rheological and computational fluid dynamics models of high solids operation through evaluation of mass and momentum transfer limitations are presented. Also, the review paper explores operational feeding strategies to obtain high ethanol concentration and conversion yield, from the hydrothermal pretreatment and investigates the impact of mass load over the operational techniques. Finally, this review contains a brief overview of some of the operations that have successfully scaled up and implemented high-solids enzymatic hydrolysis in terms of the biorefinery concept.


Assuntos
Lignina , Biomassa , Fermentação , Hidrólise , Reologia
9.
Bioresour Technol ; 343: 126017, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34628243

RESUMO

The search of sustainable and environmentally friendly alternatives to obtain compounds for different industrial sectors has grown exponentially. Following the principles of biorefinery and circular bioeconomy, processes in which the use of natural resources such as macroalgae biomass is prioritized are required. This review focuses on a description of the relevance, application and engineering platforms of hydrothermal systems and the operational conditions depending on the target as an innovative technology and bio-based solution for macroalgae fractionation in order to recover profitable products for industries and investors. In this sense, hydrothermal treatments represent a promising alternative for obtaining different high value-added compounds from this biomass; since, the different variations in terms of operating conditions, gives great versatility to this technology compared to other types of processing, allowing it to be adapted depending on the objective, whether it is working under sub/super critical conditions, thus expanding its field of application.


Assuntos
Alga Marinha , Biocombustíveis , Biomassa , Fracionamento Químico , Engenharia , Tecnologia
10.
Bioresour Technol ; 346: 126456, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863848

RESUMO

This study evaluated different carbon and nitrogen sources on the growth and production of carbohydrates, protein, lipids, and chlorophyll of Spirulina platensis LEB-52 through an easy successive methodology under aqueous conditions. Spirulina platensis was cultivated at 120 rpm and light intensity of 156 µmol m-2 s-1 in a 500 mL Erlenmeyer flask with a working volume of 250 mL, using Zarrouk's medium. The biomass, carbohydrate, and protein production together with the specific growth rate did not show a significant difference between NaHCO3 and Na2CO3. The salts of urea and ammonium are not an alternative nitrogen sources of low cost for Spirulina platensis cultivation. From the experimental results obtained in this study, a successful estimate of carbohydrate, protein, lipids, and chlorophyll content inside Spirulina platensis was achieved without use advanced analytical techniques, allowing saves resources and time. This method can be extrapolated to other microorganisms and cultivation regimens.


Assuntos
Nitrogênio , Spirulina , Biomassa , Carboidratos , Carbono , Clorofila , Cinética , Lipídeos
11.
Bioresour Technol ; 342: 125961, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34852440

RESUMO

Hydrothermal processes are an attractive clean technology and cost-effective engineering platform for biorefineries based in the conversion of biomass to biofuels and high-value bioproducts under the basis of sustainability and circular bioeconomy. The deep and detailed knowledge of the structural changes by the severity of biomasses hydrothermal fractionation is scientifically and technological needed in order to improve processes effectiveness, reactors designs, and industrial application of the multi-scale target compounds obtained by steam explosion and liquid hot water systems. The concept of the severity factor [log10 (Ro)] established>30 years ago, continues to be a useful index that can provide a simple descriptor of the relationship between the operational conditions for biomass fractionation in second generation of biorefineries. This review develops a deep explanation of the hydrothermal severity factor based in lignocellulosic biomass fractionation with emphasis in research advances, pretreatment operations and the applications of severity factor kinetic model.


Assuntos
Biocombustíveis , Vapor , Biomassa , Fracionamento Químico , Lignina , Água
12.
Bioresour Technol ; 338: 125536, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289430

RESUMO

This work focuses on the effect of subcritical water pretreatment conditions on agave bagasse chemical composition, biomass fractionation, and enzymatic hydrolysis obtained from the different tequila production processes. The pretreatment was carried out in a batch pressurized reactor within an isothermal regime. The operational conditions for subcritical water pretreatment were (150-190 °C) and (10-50 min). The best operational conditions were selected, based on the increased cellulose content (>50%) in the pretreated solid phase. The conditions for 190 °C for 50 and 30 min of pretreated agave bagasse solids were chosen for enzymatic hydrolysis susceptibility (15 FPU/g of the substrate). The maximum conversion yield (cellulose to glucose) during enzymatic hydrolysis achieved was up to 61.62% (5.86 g/L) in industrial bagasse at 72 h and initial saccharification rate was 0.34 g/(L*h) at 12 h. This study indicates that the agave bagasse is a promising raw material in the development of second-generation biorefineries.


Assuntos
Agave , Saccharum , Celulose , Hidrólise , Água
13.
Bioresour Technol ; 329: 124935, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33713900

RESUMO

Sargassum spp is an invasive macroalgae and an alternative feedstock for bioethanol production. Sargassum spp biomass was subjected to high-pressure technology for biomass fractionation under different operating conditions of temperature and residence time to obtain glucan enriched pretreated solids (32.22 g/100 g of raw material). Enzyme hydrolysis process at high pretreated solid loading (13%, w/v) and enzyme loading of 10 FPU/g of glucan was performed, obtaining 43.01 g/L of glucose corresponding to a conversion yield of 92.12%. Finally, a pre-simultaneous saccharification and fermentation strategy (PSSF) was performed to produce bioethanol. This operational strategy produced 45.66 g/L of glucose in the pre-saccharification stage, and 18.14 g/L of bioethanol was produced with a glucose to bioethanol conversion yield of 76.23%. The development of this process highlights the feasibility of bioethanol production from macroalgal biomass in the biorefinery concept.


Assuntos
Sargassum , Biocombustíveis , Biomassa , Etanol , Fermentação , Hidrólise , Tecnologia
14.
Food Chem ; 346: 128884, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401088

RESUMO

Edible mushrooms used as a protein-rich food may be an attractive alternative to conventional protein sources, while promoting its valorization. This work aimed to obtain a protein concentrate from a Pleurotus ostreatus mushroom flour, its characterization, and nutritional and functional properties evaluation. Methodologies applied for extraction and precipitation of protein were optimized - pH 4 and 12, respectively; and flour-solvent ratio of 1:20 w/v. The protein density was increased by 78%. P. ostreatus flour and concentrate were characterized by proximal composition. The content of total phenolic compounds in the protein concentrate decreased, leading to a positive effect on protein digestibility, while the DPPH radical scavenging activity was not significantly affected. Peptides with molecular weights from 12 to 35 kDa, with possible bioactivity, were identified by electrophoresis. Protein digestibility assessed by in vitro gastrointestinal digestion showed a 4.2-fold higher hydrolysis degree in the protein concentrate than the flour.


Assuntos
Proteínas Fúngicas/química , Valor Nutritivo , Pleurotus/metabolismo , Antioxidantes/química , Digestão , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Peso Molecular , Fenóis/química , Solubilidade , Solventes/química
15.
Crit Rev Food Sci Nutr ; 61(18): 2984-3006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32662286

RESUMO

Fermented food has been present throughout history, since fermentation not only helps preserving food, but also provides specific organoleptic characteristics typically associated to these foods. Most of the traditional fermented foods and artisanal beverages are produced by spontaneous generation, meaning no control of the microbiota, or the substrate used. Nevertheless, even not being standardized, they are an important source of bioactive compounds, such as antioxidant compounds, bioactive beeps, short chain fatty acids, amino acids, vitamins, and minerals. This review compiles a list of relevant traditional fermented beverages around the world, aiming to detail the fermentation process itself-including source of microorganisms, substrates, produced metabolites and the operational conditions involved. As well as to list the bioactive compounds present in each fermented food, together with their impact in the human health. Traditional fermented beverages from Mexico will be highlighted. These compounds are of high interest for the food, pharmaceutical and cosmetics industry. To scale-up the home fermentation processes, it is necessary to fully understand the microbiology and biochemistry behind these traditional products. The use of good quality raw materials with standardized methodologies and defined microorganisms, may improve and increase the production of the desirable bioactive compounds and open a market for novel functional products.


Assuntos
Alimentos Fermentados , Microbiota , Bebidas , Fermentação , Microbiologia de Alimentos , Humanos , Sensação
16.
Bioresour Technol ; 321: 124458, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33338739

RESUMO

The microbial co-cultures or consortia are a natural set of microorganisms formed from different species or the same species but different strains, in which members can interact with each other. The co-culture systems have wide variety of technological applications such as the production of foods, treatment of wastewater, removal of toxic substances, environmental recovery, and all these without the need to work in sterile conditions. Therefore, the need of understanding communication mechanisms between cell-to-cell within co-culture will allow to construct and to program their biological behavior from the use of complex substrates to produce biocompounds. The technology of co-culture systems enables the development of biorefinery platforms to obtain biofuels, and high value compounds through biomass transformation by sustainable process. This review focuses on understanding the roles of consortia microbial to design and built co-culture systems to produce high value compounds in terms a sustainable biorefinery.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Técnicas de Cocultura , Águas Residuárias
17.
Foods ; 9(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321750

RESUMO

The use of ohmic heating (OH) processing technologies in beverages might provide a higher quality value to the final product; consumers tended to prefer more natural products with minimum preservative substances. The aim of this work was to evaluate the effect of OH over the presence of microorganisms in "aguamiel" as well as to study the effects on physicochemical analysis like total sugars, soluble solids, electric conductivity pH, and color. The results showed that the conductivity of "aguamiel" was 0.374 s/m, this as temperature increased, conductivity rose as well. During OH a bubbling was observed when reaching 70 °C due to the generation of electrochemical reactions during the OH process. OH had a significant effect in the reduction of E. coli, yeast, and lactobacillus compared to conventional pasteurization, reaching optimal conditions for its total inactivation. Regarding its physicochemical properties, both treatments, conventional pasteurization and OH, did not show negative changes in aguamiel, demonstrating that OH technology can be a feasible option as a pasteurization technique. In conclusion it is important to notice that negative changes were not found in quality, color and sugars of "aguamiel". Therefore, ohmic heating can be an option to replace traditional methods used for pasteurization.

18.
Bioresour Technol ; 299: 122685, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918970

RESUMO

Different pretreatments strategies have been developed over the years mainly to enhance enzymatic cellulose degradation. In the new biorefinery era, a more holistic view on pretreatment is required to secure optimal use of the whole biomass. Hydrothermal pretreatment technology is regarded as very promising for lignocellulose biomass fractionation biorefinery and to be implemented at the industrial scale for biorefineries of second generation and circular bioeconomy, since it does not require no chemical inputs other than liquid water or steam and heat. This review focuses on the fundamentals of hydrothermal pretreatment, structure changes of biomass during this pretreatment, multiproduct strategies in terms of biorefinery, reactor technology and engineering aspects from batch to continuous operation. The treatise includes a case study of hydrothermal biomass pretreatment at pilot plant scale and integrated process design.


Assuntos
Lignina , Vapor , Biomassa , Celulose , Fracionamento Químico , Engenharia , Hidrólise
19.
Bioengineered ; 10(1): 522-537, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31633446

RESUMO

Undoubtedly, the food industry is undergoing a dynamic process of transformation in its continual development in order to meet the requirements and solve the great problems represented by a constantly growing global population and food claimant in both quantity and quality. In this sense, it is necessary to evaluate the technological trends and advances that will change the landscape of the food processing industry, highlighting the latest requirements for equipment functionality. In particular, it is crucial to evaluate the influence of sustainable green biotechnology-based technologies to consolidate the food industry of the future, today, and it must be done by analyzing the mega-consumption trends that shape the future of industry, which range from local sourcing to on-the-go food, to an increase in organic foods and clean labels (understanding ingredients on food labels). While these things may seem alien to food manufacturing, they have a considerable influence on the way products are manufactured. This paper reviews in detail the conditions of the food industry, and particularly analyzes the application of emerging technologies in food preservation, extraction of bioactive compounds, bioengineering tools and other bio-based strategies for the development of the food industry.


Assuntos
Indústria Alimentícia/métodos , Indústria Alimentícia/tendências , Bioengenharia , Indústria Alimentícia/instrumentação , Química Verde
20.
Carbohydr Polym ; 211: 349-359, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824099

RESUMO

One of the major challenges in biofuels production from lignocellulosic biomass is the generation of high glucose titers from cellulose in the enzymatic hydrolysis stage of pretreated biomass to guarantee a cost-effective process. Therefore, the enzymatic saccharification on cellulose at high solid loading is an alternative. In this work, the agave bagasse was hydrothermally pretreated and optimized at 194 °C/30 min, obtaining a pretreated solid rich in cellulose content (>46.46%), and subjected to enzymatic hydrolysis at high solid levels. A horizontal bioreactor was designed for enzyme saccharification at high solid loadings [25% (w/v)]. The bioreactor improved mixing efficiency, with cellulose conversions up to 98% (195.6 g/L at 72 h). Moreover, mathematical modeling of cellulase deactivation demonstrated that cellulases lose most of their initial activity in the first hours of the reaction. Also, cellulose was characterized by X-ray diffraction, and the pretreated solids were visualized using scanning electron microscopy.


Assuntos
Agave , Celulase/química , Celulose/química , Modelos Teóricos , Reatores Biológicos , Temperatura Alta , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA