Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(14): 7329-7339, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211632

RESUMO

A shape-selective preparation method was used to obtain highly crystalline rod-, needle-, nut-, and doughnut-like ZnO morphologies with distinct particle sizes and surface areas. We study the nucleation and growth mechanism of those structures and the influence of physical-chemical parameters, such as the solvent and the pH of the solution, on the morphology, as well as the structural and optical properties. A clear correlation between the growth rate along the c-axis and surface defects was established. Our results suggest that the needle- and rod-like morphologies are formed due to the crystal growth orientation along the c-axis and the occurrence of crystalline defects, such as oxygen vacancies and interstitial Zn2+ located at the surface, whereas nuts and doughnuts are formed due to growth along all crystalline planes except those related to growth along the c-axis. Based on the experimental results, growth mechanisms for the formation of ZnO structures were proposed. We believe this synthetic route will be of guidance to prepare several materials whose shapes will depend on the desired applications.

2.
Mater Sci Eng C Mater Biol Appl ; 98: 808-825, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813087

RESUMO

In this work we compare the antifungal capacity of zinc oxide nanoparticles (ZnO-NPs) synthesized by a chemical route and a ZnO-based nanobiohybrid obtained by green synthesis in an extract of garlic (Allium sativum). To find out the characteristics of the materials synthesized, X-ray diffraction (XRD), IR spectroscopy and absorption in UV-Vis were used, as well as both scanning (SEM) and transmission (TEM) electron microscopy. The results showed that the samples obtained were of nanometric size (<100 nm), with a predominance of the wurtzite crystal phase of ZnO and little crystallization of the nanobiohybrids. Their antifungal capacity on two pathogenic fungi of coffee, Mycena citricolor (Berk and Curt) and Colletotrichum sp. was also evaluated. Both nanomaterials showed an efficient antifungal capacity, particularly the nanobiohybrids, with ~97% inhibition in growth of M. citricolor, and ~93% for Colletotrichum sp. The microstructural study with high resolution optical (HROM) and ultra-structural microscopy (using TEM) carried out on the fungi treated with the synthesized nanomaterials showed a strong nanofungicidal effect on the vegetative and reproductive structures and fungal cell wall, respectively. The inhibition of the growth of the fungi and micro and ultra-structural affectations were explained considering that the size of the nanomaterials allows them to pass easily through the cell membranes. This indicates that they can be absorbed easily by the fungi tested here, causing cellular dysfunction. Nanofungicide effects are also attributable to the unique properties of nanomaterials, such as the high surface-to-bulk ratio of atoms and their surface physicochemical characteristics that could directly or indirectly produce reactive oxygen species (ROS), which affect the proteins of the cell wall.


Assuntos
Antifúngicos/farmacologia , Basidiomycota/efeitos dos fármacos , Café/microbiologia , Colletotrichum/efeitos dos fármacos , Nanopartículas/química , Óxido de Zinco/farmacologia , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/ultraestrutura , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/isolamento & purificação , Colletotrichum/ultraestrutura , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Cebolas/química , Tamanho da Partícula , Extratos Vegetais/química , Espectrofotometria Ultravioleta , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA