Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Anal Toxicol ; 48(5): 332-342, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38502105

RESUMO

New psychoactive substances (NPS) are often synthesized via small changes in the molecular structure, producing drugs whose effect and potency are not yet fully known. Ketamine is one of the oldest NPS, with therapeutic use in human and veterinary medicine authorized in several countries, being metabolized mainly into norketamine and 6-hydroxy-norketamine. Furthermore, two structural analogues of ketamine have recently been identified, deschloroketamine and 2-fluorodeschloroketamine, marketed as drugs of abuse. To comply with Green Analytical Toxicology (GAT) fundamentals, miniaturized techniques such as dispersive liquid-liquid microextraction (DLLME) were employed to determine toxicants in biological fluids. An analytical method for determining ketamine, its metabolites and its analogues in oral fluid was fully developed and validated by using DLLME and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The extraction parameters were optimized by multivariate analysis, obtaining the best conditions with 200 µL of sample, 100 µL of methanol as dispersive solvent and 50 µL of chloroform as extractor solvent. Linearity was obtained from 10 to 1,000 ng/mL, with limit of detection (LOD) and lower limit of quantification (LLOQ) at 10 ng/mL. Imprecision (% relative standard deviation) and bias (%) were less than 8.2% and 9.5%, respectively. The matrix effect did not exceed 10.6%, and the recovery values varied from 24% to 42%. No matrix interference and good selectivity in the evaluation of 10 different sources of oral fluid and 42 drugs at 500 ng/mL, respectively, were observed. The method was applied in the analysis of 29 authentic oral fluid samples and had its green characteristic evaluated by three different tools: the Green Analytical Procedure Index (GAPI), the Analytical Eco-Scale and the Analytical GREEnness (AGREE) metrics.


Assuntos
Ketamina , Limite de Detecção , Microextração em Fase Líquida , Saliva , Espectrometria de Massas em Tandem , Ketamina/análogos & derivados , Ketamina/análise , Saliva/química , Humanos , Cromatografia Líquida , Detecção do Abuso de Substâncias/métodos , Solventes/química , Reprodutibilidade dos Testes , Química Verde
2.
Artigo em Inglês | MEDLINE | ID: mdl-35716546

RESUMO

The aim of this study was to develop a quantitative method for the analysis of methylphenidate, the analog ethylphenidate and their metabolite ritalinic acid in oral fluid, using micro-QuEChERS extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Oral fluid samples were collected with Quantisal™ device, extracted by micro-QuEChERS technique and analyzed by LC-MS/MS. The developed method met the validation criteria of Academy Standards Board (ASB) Standard Practices for Method Validation in Forensic Toxicology (Standard 036, 2019) with limits of detection and quantification of 0.5 ng/mL and calibration curve from 0.5 to 50 ng/mL. Within-run imprecision was greater than 18.7% while between-run imprecision was greater than 17.0 % for all analytes. Bias did not vary more than 7.7 %. No evidence of carryover was found. Stability studies presented satisfactory results for 24 h on autosampler (10 °C), after 3 cycles of freeze/thaw, 7 days on freezer (-20 °C) and until 7 days on refrigerator (4 °C) for methylphenidate. The validated method was further successfully applied to the analysis of 5 authentic oral fluid samples collected from volunteers at parties and music festivals from different cities in Brazil. Four samples had positive results for methylphenidate and ritalinic acid, and only one sample was positive for methylphenidate. Ethylphenidate was not detected in the samples. The method showed acceptable analytical performance and is environmentally friendly, requiring reduced use of solvents and reagents, with potential to be applied to clinical and forensic analyses.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Estimulantes do Sistema Nervoso Central/análise , Cromatografia Líquida/métodos , Humanos , Metilfenidato/análogos & derivados , Espectrometria de Massas em Tandem/métodos
3.
J Pharm Biomed Anal ; 196: 113928, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33581589

RESUMO

The abuse of stimulants such as amphetamine, methamphetamine, ecstasy (MDMA), and their analogues (MDEA and MDA) has been increasing considerably worldwide since 2009. In this work, an analytical method using dispersive liquid-liquid microextraction (DLLME) to determine amphetamine and derivatives in oral fluid samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated. Linearity was achieved between 20 to 5000 ng/mL (r>0.992, 1/x² weighted linear regression), with a limit of quantification (LOQ) of 20 ng/mL. Imprecision (%relative standard deviation) and bias (%) were not higher than 9.1 and -12.3%, respectively. The matrix effect was lower than 14.6%, with no carryover observed up to 5000 ng/mL and no interference with 10 different oral fluid matrix sources and against 14 pharmaceuticals and other common drugs of abuse. MDMA, MDA, and MDEA in processed samples were stable up to 24 h at autosampler (10°C); and amphetamine and methamphetamine up to 18 h. The developed method was successfully applied to authentic oral fluid analyses (n = 140). The proposed method is an example of the Green Analytical Toxicology, since it reduces both the amount of solvent required in samples preparation and the quantity of solvents and reagents used in analytical-instrumental stage, as well as requires a minimal sample volume, being a cheaper, quicker and more ecological alternative to conventional methods. Obtained results showed that DLLME extraction combined with LC-MS/MS is a fast and simple method to quantify amphetamine derivatives in oral fluid samples.


Assuntos
Estimulantes do Sistema Nervoso Central , Microextração em Fase Líquida , Anfetamina , Cromatografia Líquida , Espectrometria de Massas em Tandem
5.
J Chromatogr A ; 1624: 461241, 2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32540079

RESUMO

Synthetic opioids are responsible for numerous overdoses and fatalities worldwide. Currently, fentanyl and its analogs are also mixed with heroin, cocaine and methamphetamine, or sold as oxycodone, hydrocodone and alprazolam in counterfeit medications. Microextraction techniques became more frequent in analytical toxicology over the last decade. A method to simultaneously quantify nine synthetic opioids, fentanyl, sufentanil, alfentanil, acrylfentanyl, thiofentanyl, valerylfentanyl, furanylfentanyl, acetyl fentanyl and carfentanil, and two metabolites, norfentanyl and acetyl norfentanyl, in urine samples by microextraction with packed sorbent (MEPS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated. A multivariate optimization was performed to establish the number and speed (stroke) of draw-eject sample cycles and the extraction solvent. The best extraction condition was eight draw-eject sample cycles, with a velocity of 3.6 µL/sec and acetonitrile as elution solvent. Linearity was achieved between 1 to 100 ng/mL, with a limit of detection (LOD) of 0.1 ng/mL and limit of quantification (LOQ) of 1 ng/mL. Imprecision (% relative standard deviation) and bias (%) were less than 12.8% and 5.7%, respectively. The method had good specificity and selectivity when challenged with 10 different matrix sources and 36 pharmaceuticals and drugs of abuse at concentrations of 100 or 500 ng/mL. The method was successfully applied to authentic urine samples. MEPS was an efficient semi-automatic extraction technique, requiring small volumes of organic solvents (640 µL) and sample (200 µL). The cartridges can be cleaned and reused (average of 150 sample extractions/barrel inside and needle).


Assuntos
Analgésicos Opioides/urina , Cromatografia Líquida/métodos , Miniaturização/métodos , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Analgésicos Opioides/química , Cromatografia Líquida de Alta Pressão/métodos , Fentanila/urina , Humanos , Limite de Detecção , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA