Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
In Vitro Cell Dev Biol Anim ; 60(3): 249-257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427137

RESUMO

Fibroblast cycle synchronization in G0/G1 is an essential step for nuclear reprogramming by cloning or induced cells to pluripotency. Considering the diversity among rodents and the ecological and scientific importance of these animals, we compared the contact inhibition, serum starvation, and 10 µM of roscovitine as methods of synchronization of red-rumped agouti fibroblasts. The effects of each protocol were evaluated on the percentage of cycle phase, morphology, viability, and apoptosis levels. The results showed that culturing the cells to serum starvation for 24 h (75.9%), 48 h (81.6%), 72 h (86.2%), 96 h (84.0%), and 120 h (83.7%) yielded a significantly higher percentage of cells arrested in the G0/G1 (P < 0.05) phase than cells not subjected to any cell cycle synchronization method (31.4%). Also, this effect was not different between the times of 48 and 120 h (P > 0.05). A similar response was observed for cells cultured with roscovitine for 12 h (86.9%), 24 h (74.8%), and 48 h (81.7%), with a higher percentage of synchronized cells in G0/G1 compared to cells not submitted to any synchronization treatment (52.2%). Nevertheless, this effect was best evidenced at 12 h (P < 0.05). Also, the contact inhibition for 24-120 h could not synchronize cells in G0/G1, with values ranging from 70.9 to 77.9% (P > 0.05). Moreover, no difference was observed for morphology, viability, and apoptosis levels in any synchronization method (P > 0.05). Therefore, serum starvation is as efficient as roscovitine on cycle synchronization in G0/G1 of red-rumped agouti fibroblasts.


Assuntos
Dasyproctidae , Animais , Roscovitina/farmacologia , Purinas/farmacologia , Ciclo Celular , Fibroblastos , Células Cultivadas
2.
Anim Reprod ; 20(1): e20230017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101424

RESUMO

The puma population is constantly decreasing, and cloning by somatic cell nuclear transfer can be used to conserve the species. One of the factors determining the success of the development of cloned embryos is the cell cycle stage of the donor cells. We evaluated the effects of full confluency (~100%), serum starvation (0.5% serum), and roscovitine (15 µM) treatments on the cell cycle synchronization in G0/G1 of puma skin-derived fibroblasts by flow cytometric analysis. Also, we assessed the effects of these synchronization methods on morphology, viability, and apoptosis levels using microscopy tools. The results showed that culturing the cells to confluence for 24 h (84.0%), 48 h (84.6%), and 72 h (84.2%) and serum starvation for 96 h (85.4%) yielded a significantly higher percentage of cells arrested in the G0/G1 (P 0.05) phase than cells not subjected to any cell cycle synchronization method (73.9%). Nevertheless, while serum starvation reduced the percentage of viable cells, no difference was observed for the full confluence and roscovitine treatments (P 0.05). Moreover, roscovitine for 12 h (78.6%) and 24 h (82.1%) was unable to synchronize cells in G0/G1 (P 0.05). In summary, full confluency induces puma fibroblast cell cycle synchronization at the G0/G1 stage without affecting cell viability. These outcomes may be valuable for planning donor cells for somatic cell nuclear transfer in pumas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA