Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 12: 168, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22984782

RESUMO

BACKGROUND: Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. RESULTS: The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. CONCLUSIONS: This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Piper nigrum/genética , Raízes de Plantas/genética , Transcriptoma , Arabidopsis/genética , Arabidopsis/metabolismo , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Biblioteca Gênica , Genoma de Planta , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia , Piper nigrum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos
2.
Mol Biol Rep ; 38(2): 1329-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20563648

RESUMO

The tropical tree Bixa orellana L. produces a range of secondary metabolites which biochemical and molecular biosynthesis basis are not well understood. In this work we have characterized a set of ESTs from a non-normalized cDNA library of B. orellana seeds to obtain information about the main developmental and metabolic processes taking place in developing seeds and their associated genes. After sequencing a set of randomly selected clones, most of the sequences were assigned with putative functions based on similarity, GO annotations and protein domains. The most abundant transcripts encoded proteins associated with cell wall (prolyl 4-hydroxylase), fatty acid (acyl carrier protein), and hormone/flavonoid (2OG-Fe oxygenase) synthesis, germination (MADS FLC-like protein) and embryo development (AP2/ERF transcription factor) regulation, photosynthesis (chlorophyll a-b binding protein), cell elongation (MAP65-1a), and stress responses (metallothionein- and thaumatin-like proteins). Enzymes were assigned to 16 different metabolic pathways related to both primary and secondary metabolisms. Characterization of two candidate genes of the bixin biosynthetic pathway, BoCCD and BoOMT, showed that they belong, respectively, to the carotenoid-cleavage dioxygenase 4 (CCD4) and caffeic acid O-methyltransferase (COMT) families, and are up-regulated during seed development. It indicates their involvement in the synthesis of this commercially important carotenoid pigment in seeds of B. orellana. Most of the genes identified here are the first representatives of their gene families in B. orellana.


Assuntos
Bixaceae/genética , Dioxigenases/genética , Etiquetas de Sequências Expressas , Metiltransferases/genética , Sementes/metabolismo , Biblioteca Gênica , Genes de Plantas , Modelos Genéticos , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Fatores de Tempo
3.
Mol Biotechnol ; 37(3): 220-4, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17952668

RESUMO

The tropical plant Bixa orellana L. (annatto) produces an array of natural products, including the pigment bixin used in the food and cosmetics industries. In order to understand the biochemical and molecular basis of the biosynthesis of these natural products, a reliable method for isolating high yields of high-quality RNA is required. Here we described a successful and reproducible method for isolation and purification of high-quantity and high-quality RNA from different tissues of annatto. This protocol overcomes the usual problems associated with large amounts of polyphenols, polysaccharides, pigments, and other secondary metabolites that are not easily removed by conventional extraction procedures. Furthermore, the proposed protocol can be easily carried out in any laboratory and it could also be extended to isolate RNA from other plant species showing similar abundance of compounds that interfere with RNA extractions. The yield and quality of the RNA were monitored by spectrophotometric analysis, separation on agarose gel, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), and construction of a cDNA library.


Assuntos
Bixaceae/genética , Carotenoides/metabolismo , Flavonoides/metabolismo , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Estruturas Vegetais/química , Polissacarídeos/metabolismo , RNA de Plantas/isolamento & purificação , Bixaceae/química , Bixaceae/metabolismo , Clonagem Molecular , Biblioteca Gênica , Pigmentos Biológicos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/genética , Estruturas Vegetais/genética , Estruturas Vegetais/metabolismo , Polifenóis
4.
J Exp Bot ; 57(9): 1909-18, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16595581

RESUMO

Despite extensive studies in eukaryotic aldehyde dehydrogenases, functional information about the ALDH7 antiquitin-like proteins is lacking. A soybean antiquitin homologue gene, designated GmTP55, has been isolated which encodes a dehydrogenase motif-containing 55 kDa protein induced by dehydration and salt stress. GmTP55 is closely related to the stress-induced plant antiquitin-like proteins that belong to the ALDH7 family. Transgenic tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) plants constitutively expressing GmTP55 have been obtained in order to examine the physiological role of this enzyme under a variety of stress conditions. Ectopic expression of GmTP55 in both Arabidopsis and tobacco conferred tolerance to salinity during germination and to water deficit during plant growth. Under salt stress, the germination efficiency of both transgenic tobacco and Arabidopsis seeds was significantly higher than that of their control counterparts. Likewise, under progressive drought, the transgenic tobacco lines apparently kept the shoot turgidity to a normal level, which contrasted with the leaf wilt phenotype of control plants. The transgenic plants also exhibited an enhanced tolerance to H(2)O(2)- and paraquat-induced oxidative stress. Both GmTP55-expressing Arabidopsis and tobacco seeds germinated efficiently in medium supplemented with H(2)O(2), whereas the germination of control seeds was drastically impaired. Similarly, transgenic tobacco leaf discs treated with paraquat displayed a significant reduction in the necrotic lesions as compared with control leaves. These transgenic lines also exhibited a lower concentration of lipid peroxidation-derived reactive aldehydes under oxidative stress. These results suggest that antiquitin may be involved in adaptive responses mediated by a physiologically relevant detoxification pathway in plants.


Assuntos
Aldeído Desidrogenase/fisiologia , Arabidopsis/fisiologia , Glycine max/genética , Peroxidação de Lipídeos/fisiologia , Nicotiana/fisiologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Expressão Gênica , Germinação/fisiologia , Família Multigênica , Estresse Oxidativo/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Homologia de Sequência do Ácido Nucleico , Cloreto de Sódio/metabolismo , Solo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Regulação para Cima , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA